Evaluate
\frac{\sqrt{105}}{7}\approx 1.463850109
Share
Copied to clipboard
\sqrt{\left(\frac{\frac{\sqrt{3}}{\sqrt{5}}}{\sqrt{\frac{7}{5^{2}}}}\right)^{2}}
Rewrite the square root of the division \sqrt{\frac{3}{5}} as the division of square roots \frac{\sqrt{3}}{\sqrt{5}}.
\sqrt{\left(\frac{\frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{\sqrt{\frac{7}{5^{2}}}}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\sqrt{\left(\frac{\frac{\sqrt{3}\sqrt{5}}{5}}{\sqrt{\frac{7}{5^{2}}}}\right)^{2}}
The square of \sqrt{5} is 5.
\sqrt{\left(\frac{\frac{\sqrt{15}}{5}}{\sqrt{\frac{7}{5^{2}}}}\right)^{2}}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\sqrt{\left(\frac{\frac{\sqrt{15}}{5}}{\sqrt{\frac{7}{25}}}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\sqrt{\left(\frac{\frac{\sqrt{15}}{5}}{\frac{\sqrt{7}}{\sqrt{25}}}\right)^{2}}
Rewrite the square root of the division \sqrt{\frac{7}{25}} as the division of square roots \frac{\sqrt{7}}{\sqrt{25}}.
\sqrt{\left(\frac{\frac{\sqrt{15}}{5}}{\frac{\sqrt{7}}{5}}\right)^{2}}
Calculate the square root of 25 and get 5.
\sqrt{\left(\frac{\sqrt{15}\times 5}{5\sqrt{7}}\right)^{2}}
Divide \frac{\sqrt{15}}{5} by \frac{\sqrt{7}}{5} by multiplying \frac{\sqrt{15}}{5} by the reciprocal of \frac{\sqrt{7}}{5}.
\sqrt{\left(\frac{\sqrt{15}}{\sqrt{7}}\right)^{2}}
Cancel out 5 in both numerator and denominator.
\sqrt{\left(\frac{\sqrt{15}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{15}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\sqrt{\left(\frac{\sqrt{15}\sqrt{7}}{7}\right)^{2}}
The square of \sqrt{7} is 7.
\sqrt{\left(\frac{\sqrt{105}}{7}\right)^{2}}
To multiply \sqrt{15} and \sqrt{7}, multiply the numbers under the square root.
\sqrt{\frac{\left(\sqrt{105}\right)^{2}}{7^{2}}}
To raise \frac{\sqrt{105}}{7} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{105}{7^{2}}}
The square of \sqrt{105} is 105.
\sqrt{\frac{105}{49}}
Calculate 7 to the power of 2 and get 49.
\sqrt{\frac{15}{7}}
Reduce the fraction \frac{105}{49} to lowest terms by extracting and canceling out 7.
\frac{\sqrt{15}}{\sqrt{7}}
Rewrite the square root of the division \sqrt{\frac{15}{7}} as the division of square roots \frac{\sqrt{15}}{\sqrt{7}}.
\frac{\sqrt{15}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{15}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\sqrt{15}\sqrt{7}}{7}
The square of \sqrt{7} is 7.
\frac{\sqrt{105}}{7}
To multiply \sqrt{15} and \sqrt{7}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}