Solve for x
x = \frac{\sqrt{65} + 17}{8} \approx 3.132782219
Graph
Share
Copied to clipboard
\left(\sqrt{\sqrt{x+2}}\right)^{2}=\left(\sqrt{2x-4}\right)^{2}
Square both sides of the equation.
\sqrt{x+2}=\left(\sqrt{2x-4}\right)^{2}
Calculate \sqrt{\sqrt{x+2}} to the power of 2 and get \sqrt{x+2}.
\sqrt{x+2}=2x-4
Calculate \sqrt{2x-4} to the power of 2 and get 2x-4.
\left(\sqrt{x+2}\right)^{2}=\left(2x-4\right)^{2}
Square both sides of the equation.
x+2=\left(2x-4\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x+2=4x^{2}-16x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-4\right)^{2}.
x+2-4x^{2}=-16x+16
Subtract 4x^{2} from both sides.
x+2-4x^{2}+16x=16
Add 16x to both sides.
17x+2-4x^{2}=16
Combine x and 16x to get 17x.
17x+2-4x^{2}-16=0
Subtract 16 from both sides.
17x-14-4x^{2}=0
Subtract 16 from 2 to get -14.
-4x^{2}+17x-14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-17±\sqrt{17^{2}-4\left(-4\right)\left(-14\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 17 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\left(-4\right)\left(-14\right)}}{2\left(-4\right)}
Square 17.
x=\frac{-17±\sqrt{289+16\left(-14\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-17±\sqrt{289-224}}{2\left(-4\right)}
Multiply 16 times -14.
x=\frac{-17±\sqrt{65}}{2\left(-4\right)}
Add 289 to -224.
x=\frac{-17±\sqrt{65}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{65}-17}{-8}
Now solve the equation x=\frac{-17±\sqrt{65}}{-8} when ± is plus. Add -17 to \sqrt{65}.
x=\frac{17-\sqrt{65}}{8}
Divide -17+\sqrt{65} by -8.
x=\frac{-\sqrt{65}-17}{-8}
Now solve the equation x=\frac{-17±\sqrt{65}}{-8} when ± is minus. Subtract \sqrt{65} from -17.
x=\frac{\sqrt{65}+17}{8}
Divide -17-\sqrt{65} by -8.
x=\frac{17-\sqrt{65}}{8} x=\frac{\sqrt{65}+17}{8}
The equation is now solved.
\sqrt{\sqrt{\frac{17-\sqrt{65}}{8}+2}}=\sqrt{2\times \frac{17-\sqrt{65}}{8}-4}
Substitute \frac{17-\sqrt{65}}{8} for x in the equation \sqrt{\sqrt{x+2}}=\sqrt{2x-4}. The expression \sqrt{2\times \frac{17-\sqrt{65}}{8}-4} is undefined because the radicand cannot be negative.
\sqrt{\sqrt{\frac{\sqrt{65}+17}{8}+2}}=\sqrt{2\times \frac{\sqrt{65}+17}{8}-4}
Substitute \frac{\sqrt{65}+17}{8} for x in the equation \sqrt{\sqrt{x+2}}=\sqrt{2x-4}.
\frac{1}{2}\left(1+65^{\frac{1}{2}}\right)^{\frac{1}{2}}=\frac{1}{2}\left(65^{\frac{1}{2}}+1\right)^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{65}+17}{8} satisfies the equation.
x=\frac{\sqrt{65}+17}{8}
Equation \sqrt{\sqrt{x+2}}=\sqrt{2x-4} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}