Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{\sqrt{x+2}}\right)^{2}=\left(\sqrt{2x-4}\right)^{2}
Square both sides of the equation.
\sqrt{x+2}=\left(\sqrt{2x-4}\right)^{2}
Calculate \sqrt{\sqrt{x+2}} to the power of 2 and get \sqrt{x+2}.
\sqrt{x+2}=2x-4
Calculate \sqrt{2x-4} to the power of 2 and get 2x-4.
\left(\sqrt{x+2}\right)^{2}=\left(2x-4\right)^{2}
Square both sides of the equation.
x+2=\left(2x-4\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x+2=4x^{2}-16x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-4\right)^{2}.
x+2-4x^{2}=-16x+16
Subtract 4x^{2} from both sides.
x+2-4x^{2}+16x=16
Add 16x to both sides.
17x+2-4x^{2}=16
Combine x and 16x to get 17x.
17x+2-4x^{2}-16=0
Subtract 16 from both sides.
17x-14-4x^{2}=0
Subtract 16 from 2 to get -14.
-4x^{2}+17x-14=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-17±\sqrt{17^{2}-4\left(-4\right)\left(-14\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 17 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\left(-4\right)\left(-14\right)}}{2\left(-4\right)}
Square 17.
x=\frac{-17±\sqrt{289+16\left(-14\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-17±\sqrt{289-224}}{2\left(-4\right)}
Multiply 16 times -14.
x=\frac{-17±\sqrt{65}}{2\left(-4\right)}
Add 289 to -224.
x=\frac{-17±\sqrt{65}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{65}-17}{-8}
Now solve the equation x=\frac{-17±\sqrt{65}}{-8} when ± is plus. Add -17 to \sqrt{65}.
x=\frac{17-\sqrt{65}}{8}
Divide -17+\sqrt{65} by -8.
x=\frac{-\sqrt{65}-17}{-8}
Now solve the equation x=\frac{-17±\sqrt{65}}{-8} when ± is minus. Subtract \sqrt{65} from -17.
x=\frac{\sqrt{65}+17}{8}
Divide -17-\sqrt{65} by -8.
x=\frac{17-\sqrt{65}}{8} x=\frac{\sqrt{65}+17}{8}
The equation is now solved.
\sqrt{\sqrt{\frac{17-\sqrt{65}}{8}+2}}=\sqrt{2\times \frac{17-\sqrt{65}}{8}-4}
Substitute \frac{17-\sqrt{65}}{8} for x in the equation \sqrt{\sqrt{x+2}}=\sqrt{2x-4}. The expression \sqrt{2\times \frac{17-\sqrt{65}}{8}-4} is undefined because the radicand cannot be negative.
\sqrt{\sqrt{\frac{\sqrt{65}+17}{8}+2}}=\sqrt{2\times \frac{\sqrt{65}+17}{8}-4}
Substitute \frac{\sqrt{65}+17}{8} for x in the equation \sqrt{\sqrt{x+2}}=\sqrt{2x-4}.
\frac{1}{2}\left(1+65^{\frac{1}{2}}\right)^{\frac{1}{2}}=\frac{1}{2}\left(65^{\frac{1}{2}}+1\right)^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{65}+17}{8} satisfies the equation.
x=\frac{\sqrt{65}+17}{8}
Equation \sqrt{\sqrt{x+2}}=\sqrt{2x-4} has a unique solution.