Evaluate
\frac{\sqrt{39}}{3}+10\approx 12.081665999
Share
Copied to clipboard
\sqrt{5+\frac{-\sqrt{64}}{\sqrt{144}}}+\sqrt[3]{1000}
Calculate \sqrt[3]{125} and get 5.
\sqrt{5+\frac{-8}{\sqrt{144}}}+\sqrt[3]{1000}
Calculate the square root of 64 and get 8.
\sqrt{5+\frac{-8}{12}}+\sqrt[3]{1000}
Calculate the square root of 144 and get 12.
\sqrt{5-\frac{2}{3}}+\sqrt[3]{1000}
Reduce the fraction \frac{-8}{12} to lowest terms by extracting and canceling out 4.
\sqrt{\frac{13}{3}}+\sqrt[3]{1000}
Subtract \frac{2}{3} from 5 to get \frac{13}{3}.
\frac{\sqrt{13}}{\sqrt{3}}+\sqrt[3]{1000}
Rewrite the square root of the division \sqrt{\frac{13}{3}} as the division of square roots \frac{\sqrt{13}}{\sqrt{3}}.
\frac{\sqrt{13}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt[3]{1000}
Rationalize the denominator of \frac{\sqrt{13}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{13}\sqrt{3}}{3}+\sqrt[3]{1000}
The square of \sqrt{3} is 3.
\frac{\sqrt{39}}{3}+\sqrt[3]{1000}
To multiply \sqrt{13} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{39}}{3}+10
Calculate \sqrt[3]{1000} and get 10.
\frac{\sqrt{39}}{3}+\frac{10\times 3}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 10 times \frac{3}{3}.
\frac{\sqrt{39}+10\times 3}{3}
Since \frac{\sqrt{39}}{3} and \frac{10\times 3}{3} have the same denominator, add them by adding their numerators.
\frac{\sqrt{39}+30}{3}
Do the multiplications in \sqrt{39}+10\times 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}