Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{\frac{x-2}{3}}\right)^{2}=\left(\frac{25-4x}{5}\right)^{2}
Square both sides of the equation.
\frac{x-2}{3}=\left(\frac{25-4x}{5}\right)^{2}
Calculate \sqrt{\frac{x-2}{3}} to the power of 2 and get \frac{x-2}{3}.
\frac{x-2}{3}=\frac{\left(25-4x\right)^{2}}{5^{2}}
To raise \frac{25-4x}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{3}x-\frac{2}{3}=\frac{\left(25-4x\right)^{2}}{5^{2}}
Divide each term of x-2 by 3 to get \frac{1}{3}x-\frac{2}{3}.
\frac{1}{3}x-\frac{2}{3}=\frac{625-200x+16x^{2}}{5^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(25-4x\right)^{2}.
\frac{1}{3}x-\frac{2}{3}=\frac{625-200x+16x^{2}}{25}
Calculate 5 to the power of 2 and get 25.
\frac{1}{3}x-\frac{2}{3}=25-8x+\frac{16}{25}x^{2}
Divide each term of 625-200x+16x^{2} by 25 to get 25-8x+\frac{16}{25}x^{2}.
\frac{1}{3}x-\frac{2}{3}-25=-8x+\frac{16}{25}x^{2}
Subtract 25 from both sides.
\frac{1}{3}x-\frac{77}{3}=-8x+\frac{16}{25}x^{2}
Subtract 25 from -\frac{2}{3} to get -\frac{77}{3}.
\frac{1}{3}x-\frac{77}{3}+8x=\frac{16}{25}x^{2}
Add 8x to both sides.
\frac{25}{3}x-\frac{77}{3}=\frac{16}{25}x^{2}
Combine \frac{1}{3}x and 8x to get \frac{25}{3}x.
\frac{25}{3}x-\frac{77}{3}-\frac{16}{25}x^{2}=0
Subtract \frac{16}{25}x^{2} from both sides.
-\frac{16}{25}x^{2}+\frac{25}{3}x-\frac{77}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{25}{3}±\sqrt{\left(\frac{25}{3}\right)^{2}-4\left(-\frac{16}{25}\right)\left(-\frac{77}{3}\right)}}{2\left(-\frac{16}{25}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{16}{25} for a, \frac{25}{3} for b, and -\frac{77}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{25}{3}±\sqrt{\frac{625}{9}-4\left(-\frac{16}{25}\right)\left(-\frac{77}{3}\right)}}{2\left(-\frac{16}{25}\right)}
Square \frac{25}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{25}{3}±\sqrt{\frac{625}{9}+\frac{64}{25}\left(-\frac{77}{3}\right)}}{2\left(-\frac{16}{25}\right)}
Multiply -4 times -\frac{16}{25}.
x=\frac{-\frac{25}{3}±\sqrt{\frac{625}{9}-\frac{4928}{75}}}{2\left(-\frac{16}{25}\right)}
Multiply \frac{64}{25} times -\frac{77}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{25}{3}±\sqrt{\frac{841}{225}}}{2\left(-\frac{16}{25}\right)}
Add \frac{625}{9} to -\frac{4928}{75} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{25}{3}±\frac{29}{15}}{2\left(-\frac{16}{25}\right)}
Take the square root of \frac{841}{225}.
x=\frac{-\frac{25}{3}±\frac{29}{15}}{-\frac{32}{25}}
Multiply 2 times -\frac{16}{25}.
x=-\frac{\frac{32}{5}}{-\frac{32}{25}}
Now solve the equation x=\frac{-\frac{25}{3}±\frac{29}{15}}{-\frac{32}{25}} when ± is plus. Add -\frac{25}{3} to \frac{29}{15} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=5
Divide -\frac{32}{5} by -\frac{32}{25} by multiplying -\frac{32}{5} by the reciprocal of -\frac{32}{25}.
x=-\frac{\frac{154}{15}}{-\frac{32}{25}}
Now solve the equation x=\frac{-\frac{25}{3}±\frac{29}{15}}{-\frac{32}{25}} when ± is minus. Subtract \frac{29}{15} from -\frac{25}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{385}{48}
Divide -\frac{154}{15} by -\frac{32}{25} by multiplying -\frac{154}{15} by the reciprocal of -\frac{32}{25}.
x=5 x=\frac{385}{48}
The equation is now solved.
\sqrt{\frac{5-2}{3}}=\frac{25-4\times 5}{5}
Substitute 5 for x in the equation \sqrt{\frac{x-2}{3}}=\frac{25-4x}{5}.
1=1
Simplify. The value x=5 satisfies the equation.
\sqrt{\frac{\frac{385}{48}-2}{3}}=\frac{25-4\times \frac{385}{48}}{5}
Substitute \frac{385}{48} for x in the equation \sqrt{\frac{x-2}{3}}=\frac{25-4x}{5}.
\frac{17}{12}=-\frac{17}{12}
Simplify. The value x=\frac{385}{48} does not satisfy the equation because the left and the right hand side have opposite signs.
x=5
Equation \sqrt{\frac{x-2}{3}}=\frac{25-4x}{5} has a unique solution.