Evaluate
\frac{12887\sqrt{107}}{1070}\approx 124.583331343
Share
Copied to clipboard
\sqrt{\frac{49}{428}}\sqrt{\frac{9\times 7^{2}}{\frac{45^{2}}{789^{2}}}}
Reduce the fraction \frac{98}{856} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{49}}{\sqrt{428}}\sqrt{\frac{9\times 7^{2}}{\frac{45^{2}}{789^{2}}}}
Rewrite the square root of the division \sqrt{\frac{49}{428}} as the division of square roots \frac{\sqrt{49}}{\sqrt{428}}.
\frac{7}{\sqrt{428}}\sqrt{\frac{9\times 7^{2}}{\frac{45^{2}}{789^{2}}}}
Calculate the square root of 49 and get 7.
\frac{7}{2\sqrt{107}}\sqrt{\frac{9\times 7^{2}}{\frac{45^{2}}{789^{2}}}}
Factor 428=2^{2}\times 107. Rewrite the square root of the product \sqrt{2^{2}\times 107} as the product of square roots \sqrt{2^{2}}\sqrt{107}. Take the square root of 2^{2}.
\frac{7\sqrt{107}}{2\left(\sqrt{107}\right)^{2}}\sqrt{\frac{9\times 7^{2}}{\frac{45^{2}}{789^{2}}}}
Rationalize the denominator of \frac{7}{2\sqrt{107}} by multiplying numerator and denominator by \sqrt{107}.
\frac{7\sqrt{107}}{2\times 107}\sqrt{\frac{9\times 7^{2}}{\frac{45^{2}}{789^{2}}}}
The square of \sqrt{107} is 107.
\frac{7\sqrt{107}}{214}\sqrt{\frac{9\times 7^{2}}{\frac{45^{2}}{789^{2}}}}
Multiply 2 and 107 to get 214.
\frac{7\sqrt{107}}{214}\sqrt{\frac{9\times 49}{\frac{45^{2}}{789^{2}}}}
Calculate 7 to the power of 2 and get 49.
\frac{7\sqrt{107}}{214}\sqrt{\frac{441}{\frac{45^{2}}{789^{2}}}}
Multiply 9 and 49 to get 441.
\frac{7\sqrt{107}}{214}\sqrt{\frac{441}{\frac{2025}{789^{2}}}}
Calculate 45 to the power of 2 and get 2025.
\frac{7\sqrt{107}}{214}\sqrt{\frac{441}{\frac{2025}{622521}}}
Calculate 789 to the power of 2 and get 622521.
\frac{7\sqrt{107}}{214}\sqrt{\frac{441}{\frac{225}{69169}}}
Reduce the fraction \frac{2025}{622521} to lowest terms by extracting and canceling out 9.
\frac{7\sqrt{107}}{214}\sqrt{441\times \frac{69169}{225}}
Divide 441 by \frac{225}{69169} by multiplying 441 by the reciprocal of \frac{225}{69169}.
\frac{7\sqrt{107}}{214}\sqrt{\frac{441\times 69169}{225}}
Express 441\times \frac{69169}{225} as a single fraction.
\frac{7\sqrt{107}}{214}\sqrt{\frac{30503529}{225}}
Multiply 441 and 69169 to get 30503529.
\frac{7\sqrt{107}}{214}\sqrt{\frac{3389281}{25}}
Reduce the fraction \frac{30503529}{225} to lowest terms by extracting and canceling out 9.
\frac{7\sqrt{107}}{214}\times \frac{1841}{5}
Rewrite the square root of the division \frac{3389281}{25} as the division of square roots \frac{\sqrt{3389281}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{7\sqrt{107}\times 1841}{214\times 5}
Multiply \frac{7\sqrt{107}}{214} times \frac{1841}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{12887\sqrt{107}}{214\times 5}
Multiply 7 and 1841 to get 12887.
\frac{12887\sqrt{107}}{1070}
Multiply 214 and 5 to get 1070.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}