Evaluate
\frac{\sqrt{210}}{140}\approx 0.103509834
Share
Copied to clipboard
\sqrt{\frac{8}{7}\times 0.009375}
Subtract 0.140625 from 0.15 to get 0.009375.
\sqrt{\frac{8}{7}\times \frac{3}{320}}
Convert decimal number 0.009375 to fraction \frac{9375}{1000000}. Reduce the fraction \frac{9375}{1000000} to lowest terms by extracting and canceling out 3125.
\sqrt{\frac{8\times 3}{7\times 320}}
Multiply \frac{8}{7} times \frac{3}{320} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{24}{2240}}
Do the multiplications in the fraction \frac{8\times 3}{7\times 320}.
\sqrt{\frac{3}{280}}
Reduce the fraction \frac{24}{2240} to lowest terms by extracting and canceling out 8.
\frac{\sqrt{3}}{\sqrt{280}}
Rewrite the square root of the division \sqrt{\frac{3}{280}} as the division of square roots \frac{\sqrt{3}}{\sqrt{280}}.
\frac{\sqrt{3}}{2\sqrt{70}}
Factor 280=2^{2}\times 70. Rewrite the square root of the product \sqrt{2^{2}\times 70} as the product of square roots \sqrt{2^{2}}\sqrt{70}. Take the square root of 2^{2}.
\frac{\sqrt{3}\sqrt{70}}{2\left(\sqrt{70}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{2\sqrt{70}} by multiplying numerator and denominator by \sqrt{70}.
\frac{\sqrt{3}\sqrt{70}}{2\times 70}
The square of \sqrt{70} is 70.
\frac{\sqrt{210}}{2\times 70}
To multiply \sqrt{3} and \sqrt{70}, multiply the numbers under the square root.
\frac{\sqrt{210}}{140}
Multiply 2 and 70 to get 140.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}