Evaluate
2\sqrt{30}\approx 10.95445115
Share
Copied to clipboard
\frac{\frac{\sqrt{8}}{\sqrt{3}}}{\sqrt{\frac{1}{45}}}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
\frac{\frac{2\sqrt{2}}{\sqrt{3}}}{\sqrt{\frac{1}{45}}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{1}{45}}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{2\sqrt{2}\sqrt{3}}{3}}{\sqrt{\frac{1}{45}}}
The square of \sqrt{3} is 3.
\frac{\frac{2\sqrt{6}}{3}}{\sqrt{\frac{1}{45}}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{2\sqrt{6}}{3}}{\frac{\sqrt{1}}{\sqrt{45}}}
Rewrite the square root of the division \sqrt{\frac{1}{45}} as the division of square roots \frac{\sqrt{1}}{\sqrt{45}}.
\frac{\frac{2\sqrt{6}}{3}}{\frac{1}{\sqrt{45}}}
Calculate the square root of 1 and get 1.
\frac{\frac{2\sqrt{6}}{3}}{\frac{1}{3\sqrt{5}}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{\frac{2\sqrt{6}}{3}}{\frac{\sqrt{5}}{3\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{1}{3\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{2\sqrt{6}}{3}}{\frac{\sqrt{5}}{3\times 5}}
The square of \sqrt{5} is 5.
\frac{\frac{2\sqrt{6}}{3}}{\frac{\sqrt{5}}{15}}
Multiply 3 and 5 to get 15.
\frac{2\sqrt{6}\times 15}{3\sqrt{5}}
Divide \frac{2\sqrt{6}}{3} by \frac{\sqrt{5}}{15} by multiplying \frac{2\sqrt{6}}{3} by the reciprocal of \frac{\sqrt{5}}{15}.
\frac{2\times 5\sqrt{6}}{\sqrt{5}}
Cancel out 3 in both numerator and denominator.
\frac{2\times 5\sqrt{6}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{2\times 5\sqrt{6}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{2\times 5\sqrt{6}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{10\sqrt{6}\sqrt{5}}{5}
Multiply 2 and 5 to get 10.
\frac{10\sqrt{30}}{5}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
2\sqrt{30}
Divide 10\sqrt{30} by 5 to get 2\sqrt{30}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}