Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{76.79-\frac{961}{15}}{14}}
Calculate 31 to the power of 2 and get 961.
\sqrt{\frac{\frac{7679}{100}-\frac{961}{15}}{14}}
Convert decimal number 76.79 to fraction \frac{7679}{100}.
\sqrt{\frac{\frac{23037}{300}-\frac{19220}{300}}{14}}
Least common multiple of 100 and 15 is 300. Convert \frac{7679}{100} and \frac{961}{15} to fractions with denominator 300.
\sqrt{\frac{\frac{23037-19220}{300}}{14}}
Since \frac{23037}{300} and \frac{19220}{300} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{3817}{300}}{14}}
Subtract 19220 from 23037 to get 3817.
\sqrt{\frac{3817}{300\times 14}}
Express \frac{\frac{3817}{300}}{14} as a single fraction.
\sqrt{\frac{3817}{4200}}
Multiply 300 and 14 to get 4200.
\frac{\sqrt{3817}}{\sqrt{4200}}
Rewrite the square root of the division \sqrt{\frac{3817}{4200}} as the division of square roots \frac{\sqrt{3817}}{\sqrt{4200}}.
\frac{\sqrt{3817}}{10\sqrt{42}}
Factor 4200=10^{2}\times 42. Rewrite the square root of the product \sqrt{10^{2}\times 42} as the product of square roots \sqrt{10^{2}}\sqrt{42}. Take the square root of 10^{2}.
\frac{\sqrt{3817}\sqrt{42}}{10\left(\sqrt{42}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3817}}{10\sqrt{42}} by multiplying numerator and denominator by \sqrt{42}.
\frac{\sqrt{3817}\sqrt{42}}{10\times 42}
The square of \sqrt{42} is 42.
\frac{\sqrt{160314}}{10\times 42}
To multiply \sqrt{3817} and \sqrt{42}, multiply the numbers under the square root.
\frac{\sqrt{160314}}{420}
Multiply 10 and 42 to get 420.