\sqrt{ \frac{ 7 }{ 11 } } \times ( \sqrt{ \frac{ 11 }{ 7 } } \div \sqrt{ \frac{ 1 }{ 11 } }
Evaluate
\sqrt{11}\approx 3.31662479
Share
Copied to clipboard
\frac{\sqrt{7}}{\sqrt{11}}\times \frac{\sqrt{\frac{11}{7}}}{\sqrt{\frac{1}{11}}}
Rewrite the square root of the division \sqrt{\frac{7}{11}} as the division of square roots \frac{\sqrt{7}}{\sqrt{11}}.
\frac{\sqrt{7}\sqrt{11}}{\left(\sqrt{11}\right)^{2}}\times \frac{\sqrt{\frac{11}{7}}}{\sqrt{\frac{1}{11}}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{\sqrt{7}\sqrt{11}}{11}\times \frac{\sqrt{\frac{11}{7}}}{\sqrt{\frac{1}{11}}}
The square of \sqrt{11} is 11.
\frac{\sqrt{77}}{11}\times \frac{\sqrt{\frac{11}{7}}}{\sqrt{\frac{1}{11}}}
To multiply \sqrt{7} and \sqrt{11}, multiply the numbers under the square root.
\frac{\sqrt{77}}{11}\times \frac{\frac{\sqrt{11}}{\sqrt{7}}}{\sqrt{\frac{1}{11}}}
Rewrite the square root of the division \sqrt{\frac{11}{7}} as the division of square roots \frac{\sqrt{11}}{\sqrt{7}}.
\frac{\sqrt{77}}{11}\times \frac{\frac{\sqrt{11}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}}{\sqrt{\frac{1}{11}}}
Rationalize the denominator of \frac{\sqrt{11}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\sqrt{77}}{11}\times \frac{\frac{\sqrt{11}\sqrt{7}}{7}}{\sqrt{\frac{1}{11}}}
The square of \sqrt{7} is 7.
\frac{\sqrt{77}}{11}\times \frac{\frac{\sqrt{77}}{7}}{\sqrt{\frac{1}{11}}}
To multiply \sqrt{11} and \sqrt{7}, multiply the numbers under the square root.
\frac{\sqrt{77}}{11}\times \frac{\frac{\sqrt{77}}{7}}{\frac{\sqrt{1}}{\sqrt{11}}}
Rewrite the square root of the division \sqrt{\frac{1}{11}} as the division of square roots \frac{\sqrt{1}}{\sqrt{11}}.
\frac{\sqrt{77}}{11}\times \frac{\frac{\sqrt{77}}{7}}{\frac{1}{\sqrt{11}}}
Calculate the square root of 1 and get 1.
\frac{\sqrt{77}}{11}\times \frac{\frac{\sqrt{77}}{7}}{\frac{\sqrt{11}}{\left(\sqrt{11}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{\sqrt{77}}{11}\times \frac{\frac{\sqrt{77}}{7}}{\frac{\sqrt{11}}{11}}
The square of \sqrt{11} is 11.
\frac{\sqrt{77}}{11}\times \frac{\sqrt{77}\times 11}{7\sqrt{11}}
Divide \frac{\sqrt{77}}{7} by \frac{\sqrt{11}}{11} by multiplying \frac{\sqrt{77}}{7} by the reciprocal of \frac{\sqrt{11}}{11}.
\frac{\sqrt{77}}{11}\times \frac{\sqrt{77}\times 11\sqrt{11}}{7\left(\sqrt{11}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{77}\times 11}{7\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{\sqrt{77}}{11}\times \frac{\sqrt{77}\times 11\sqrt{11}}{7\times 11}
The square of \sqrt{11} is 11.
\frac{\sqrt{77}}{11}\times \frac{\sqrt{11}\sqrt{7}\times 11\sqrt{11}}{7\times 11}
Factor 77=11\times 7. Rewrite the square root of the product \sqrt{11\times 7} as the product of square roots \sqrt{11}\sqrt{7}.
\frac{\sqrt{77}}{11}\times \frac{11\times 11\sqrt{7}}{7\times 11}
Multiply \sqrt{11} and \sqrt{11} to get 11.
\frac{\sqrt{77}}{11}\times \frac{11\times 11\sqrt{7}}{77}
Multiply 7 and 11 to get 77.
\frac{\sqrt{77}}{11}\times \frac{121\sqrt{7}}{77}
Multiply 11 and 11 to get 121.
\frac{\sqrt{77}}{11}\times \frac{11}{7}\sqrt{7}
Divide 121\sqrt{7} by 77 to get \frac{11}{7}\sqrt{7}.
\frac{\sqrt{77}\times 11}{11\times 7}\sqrt{7}
Multiply \frac{\sqrt{77}}{11} times \frac{11}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{77}}{7}\sqrt{7}
Cancel out 11 in both numerator and denominator.
\frac{\sqrt{77}\sqrt{7}}{7}
Express \frac{\sqrt{77}}{7}\sqrt{7} as a single fraction.
\frac{\sqrt{7}\sqrt{11}\sqrt{7}}{7}
Factor 77=7\times 11. Rewrite the square root of the product \sqrt{7\times 11} as the product of square roots \sqrt{7}\sqrt{11}.
\frac{7\sqrt{11}}{7}
Multiply \sqrt{7} and \sqrt{7} to get 7.
\sqrt{11}
Cancel out 7 and 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}