Evaluate
\frac{\sqrt{7}}{11}+1\approx 1.240522846
Share
Copied to clipboard
\frac{\sqrt{7}}{\sqrt{11}}\left(\sqrt{\frac{11}{7}}+\sqrt{\frac{1}{11}}\right)
Rewrite the square root of the division \sqrt{\frac{7}{11}} as the division of square roots \frac{\sqrt{7}}{\sqrt{11}}.
\frac{\sqrt{7}\sqrt{11}}{\left(\sqrt{11}\right)^{2}}\left(\sqrt{\frac{11}{7}}+\sqrt{\frac{1}{11}}\right)
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{\sqrt{7}\sqrt{11}}{11}\left(\sqrt{\frac{11}{7}}+\sqrt{\frac{1}{11}}\right)
The square of \sqrt{11} is 11.
\frac{\sqrt{77}}{11}\left(\sqrt{\frac{11}{7}}+\sqrt{\frac{1}{11}}\right)
To multiply \sqrt{7} and \sqrt{11}, multiply the numbers under the square root.
\frac{\sqrt{77}}{11}\left(\frac{\sqrt{11}}{\sqrt{7}}+\sqrt{\frac{1}{11}}\right)
Rewrite the square root of the division \sqrt{\frac{11}{7}} as the division of square roots \frac{\sqrt{11}}{\sqrt{7}}.
\frac{\sqrt{77}}{11}\left(\frac{\sqrt{11}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}+\sqrt{\frac{1}{11}}\right)
Rationalize the denominator of \frac{\sqrt{11}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\sqrt{77}}{11}\left(\frac{\sqrt{11}\sqrt{7}}{7}+\sqrt{\frac{1}{11}}\right)
The square of \sqrt{7} is 7.
\frac{\sqrt{77}}{11}\left(\frac{\sqrt{77}}{7}+\sqrt{\frac{1}{11}}\right)
To multiply \sqrt{11} and \sqrt{7}, multiply the numbers under the square root.
\frac{\sqrt{77}}{11}\left(\frac{\sqrt{77}}{7}+\frac{\sqrt{1}}{\sqrt{11}}\right)
Rewrite the square root of the division \sqrt{\frac{1}{11}} as the division of square roots \frac{\sqrt{1}}{\sqrt{11}}.
\frac{\sqrt{77}}{11}\left(\frac{\sqrt{77}}{7}+\frac{1}{\sqrt{11}}\right)
Calculate the square root of 1 and get 1.
\frac{\sqrt{77}}{11}\left(\frac{\sqrt{77}}{7}+\frac{\sqrt{11}}{\left(\sqrt{11}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{\sqrt{77}}{11}\left(\frac{\sqrt{77}}{7}+\frac{\sqrt{11}}{11}\right)
The square of \sqrt{11} is 11.
\frac{\sqrt{77}}{11}\left(\frac{11\sqrt{77}}{77}+\frac{7\sqrt{11}}{77}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 11 is 77. Multiply \frac{\sqrt{77}}{7} times \frac{11}{11}. Multiply \frac{\sqrt{11}}{11} times \frac{7}{7}.
\frac{\sqrt{77}}{11}\times \frac{11\sqrt{77}+7\sqrt{11}}{77}
Since \frac{11\sqrt{77}}{77} and \frac{7\sqrt{11}}{77} have the same denominator, add them by adding their numerators.
\frac{\sqrt{77}\left(11\sqrt{77}+7\sqrt{11}\right)}{11\times 77}
Multiply \frac{\sqrt{77}}{11} times \frac{11\sqrt{77}+7\sqrt{11}}{77} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{77}\left(11\sqrt{77}+7\sqrt{11}\right)}{847}
Multiply 11 and 77 to get 847.
\frac{11\left(\sqrt{77}\right)^{2}+7\sqrt{77}\sqrt{11}}{847}
Use the distributive property to multiply \sqrt{77} by 11\sqrt{77}+7\sqrt{11}.
\frac{11\times 77+7\sqrt{77}\sqrt{11}}{847}
The square of \sqrt{77} is 77.
\frac{847+7\sqrt{77}\sqrt{11}}{847}
Multiply 11 and 77 to get 847.
\frac{847+7\sqrt{11}\sqrt{7}\sqrt{11}}{847}
Factor 77=11\times 7. Rewrite the square root of the product \sqrt{11\times 7} as the product of square roots \sqrt{11}\sqrt{7}.
\frac{847+7\times 11\sqrt{7}}{847}
Multiply \sqrt{11} and \sqrt{11} to get 11.
\frac{847+77\sqrt{7}}{847}
Multiply 7 and 11 to get 77.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}