Evaluate
\frac{23000000\sqrt{13719030}}{3639}\approx 23410327.17673061
Share
Copied to clipboard
\sqrt{\frac{667\times 10^{13}\times 598}{900+6378}}
To multiply powers of the same base, add their exponents. Add -11 and 24 to get 13.
\sqrt{\frac{667\times 10000000000000\times 598}{900+6378}}
Calculate 10 to the power of 13 and get 10000000000000.
\sqrt{\frac{6670000000000000\times 598}{900+6378}}
Multiply 667 and 10000000000000 to get 6670000000000000.
\sqrt{\frac{3988660000000000000}{900+6378}}
Multiply 6670000000000000 and 598 to get 3988660000000000000.
\sqrt{\frac{3988660000000000000}{7278}}
Add 900 and 6378 to get 7278.
\sqrt{\frac{1994330000000000000}{3639}}
Reduce the fraction \frac{3988660000000000000}{7278} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{1994330000000000000}}{\sqrt{3639}}
Rewrite the square root of the division \sqrt{\frac{1994330000000000000}{3639}} as the division of square roots \frac{\sqrt{1994330000000000000}}{\sqrt{3639}}.
\frac{23000000\sqrt{3770}}{\sqrt{3639}}
Factor 1994330000000000000=23000000^{2}\times 3770. Rewrite the square root of the product \sqrt{23000000^{2}\times 3770} as the product of square roots \sqrt{23000000^{2}}\sqrt{3770}. Take the square root of 23000000^{2}.
\frac{23000000\sqrt{3770}\sqrt{3639}}{\left(\sqrt{3639}\right)^{2}}
Rationalize the denominator of \frac{23000000\sqrt{3770}}{\sqrt{3639}} by multiplying numerator and denominator by \sqrt{3639}.
\frac{23000000\sqrt{3770}\sqrt{3639}}{3639}
The square of \sqrt{3639} is 3639.
\frac{23000000\sqrt{13719030}}{3639}
To multiply \sqrt{3770} and \sqrt{3639}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}