Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{6.73\times 10^{13}\times 5963}{\left(6371+640\right)\times 10^{3}}}
To multiply powers of the same base, add their exponents. Add -11 and 24 to get 13.
\sqrt{\frac{6.73\times 5963\times 10^{10}}{640+6371}}
Cancel out 10^{3} in both numerator and denominator.
\sqrt{\frac{40130.99\times 10^{10}}{640+6371}}
Multiply 6.73 and 5963 to get 40130.99.
\sqrt{\frac{40130.99\times 10000000000}{640+6371}}
Calculate 10 to the power of 10 and get 10000000000.
\sqrt{\frac{401309900000000}{640+6371}}
Multiply 40130.99 and 10000000000 to get 401309900000000.
\sqrt{\frac{401309900000000}{7011}}
Add 640 and 6371 to get 7011.
\frac{\sqrt{401309900000000}}{\sqrt{7011}}
Rewrite the square root of the division \sqrt{\frac{401309900000000}{7011}} as the division of square roots \frac{\sqrt{401309900000000}}{\sqrt{7011}}.
\frac{10000\sqrt{4013099}}{\sqrt{7011}}
Factor 401309900000000=10000^{2}\times 4013099. Rewrite the square root of the product \sqrt{10000^{2}\times 4013099} as the product of square roots \sqrt{10000^{2}}\sqrt{4013099}. Take the square root of 10000^{2}.
\frac{10000\sqrt{4013099}}{3\sqrt{779}}
Factor 7011=3^{2}\times 779. Rewrite the square root of the product \sqrt{3^{2}\times 779} as the product of square roots \sqrt{3^{2}}\sqrt{779}. Take the square root of 3^{2}.
\frac{10000\sqrt{4013099}\sqrt{779}}{3\left(\sqrt{779}\right)^{2}}
Rationalize the denominator of \frac{10000\sqrt{4013099}}{3\sqrt{779}} by multiplying numerator and denominator by \sqrt{779}.
\frac{10000\sqrt{4013099}\sqrt{779}}{3\times 779}
The square of \sqrt{779} is 779.
\frac{10000\sqrt{3126204121}}{3\times 779}
To multiply \sqrt{4013099} and \sqrt{779}, multiply the numbers under the square root.
\frac{10000\sqrt{3126204121}}{2337}
Multiply 3 and 779 to get 2337.