Evaluate
\frac{\sqrt{1985}}{50}\approx 0.891066776
Share
Copied to clipboard
\sqrt{\frac{4.842+6\times 0.781}{12}}
Multiply 6 and 0.807 to get 4.842.
\sqrt{\frac{4.842+4.686}{12}}
Multiply 6 and 0.781 to get 4.686.
\sqrt{\frac{9.528}{12}}
Add 4.842 and 4.686 to get 9.528.
\sqrt{\frac{9528}{12000}}
Expand \frac{9.528}{12} by multiplying both numerator and the denominator by 1000.
\sqrt{\frac{397}{500}}
Reduce the fraction \frac{9528}{12000} to lowest terms by extracting and canceling out 24.
\frac{\sqrt{397}}{\sqrt{500}}
Rewrite the square root of the division \sqrt{\frac{397}{500}} as the division of square roots \frac{\sqrt{397}}{\sqrt{500}}.
\frac{\sqrt{397}}{10\sqrt{5}}
Factor 500=10^{2}\times 5. Rewrite the square root of the product \sqrt{10^{2}\times 5} as the product of square roots \sqrt{10^{2}}\sqrt{5}. Take the square root of 10^{2}.
\frac{\sqrt{397}\sqrt{5}}{10\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{397}}{10\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{397}\sqrt{5}}{10\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{1985}}{10\times 5}
To multiply \sqrt{397} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{1985}}{50}
Multiply 10 and 5 to get 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}