Evaluate
\frac{\sqrt{351758}}{236}\approx 2.513101265
Share
Copied to clipboard
\sqrt{\frac{5962}{944}}
Add 65 and 879 to get 944.
\sqrt{\frac{2981}{472}}
Reduce the fraction \frac{5962}{944} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{2981}}{\sqrt{472}}
Rewrite the square root of the division \sqrt{\frac{2981}{472}} as the division of square roots \frac{\sqrt{2981}}{\sqrt{472}}.
\frac{\sqrt{2981}}{2\sqrt{118}}
Factor 472=2^{2}\times 118. Rewrite the square root of the product \sqrt{2^{2}\times 118} as the product of square roots \sqrt{2^{2}}\sqrt{118}. Take the square root of 2^{2}.
\frac{\sqrt{2981}\sqrt{118}}{2\left(\sqrt{118}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{2981}}{2\sqrt{118}} by multiplying numerator and denominator by \sqrt{118}.
\frac{\sqrt{2981}\sqrt{118}}{2\times 118}
The square of \sqrt{118} is 118.
\frac{\sqrt{351758}}{2\times 118}
To multiply \sqrt{2981} and \sqrt{118}, multiply the numbers under the square root.
\frac{\sqrt{351758}}{236}
Multiply 2 and 118 to get 236.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}