Evaluate
\frac{\sqrt{2}}{60000000}\approx 0.000000024
Share
Copied to clipboard
\sqrt{\frac{5\times 10^{-6}}{9\times 10^{9}}}
To multiply powers of the same base, add their exponents. Add -4 and -2 to get -6.
\sqrt{\frac{5}{9\times 10^{15}}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\sqrt{\frac{5}{9\times 1000000000000000}}
Calculate 10 to the power of 15 and get 1000000000000000.
\sqrt{\frac{5}{9000000000000000}}
Multiply 9 and 1000000000000000 to get 9000000000000000.
\sqrt{\frac{1}{1800000000000000}}
Reduce the fraction \frac{5}{9000000000000000} to lowest terms by extracting and canceling out 5.
\frac{\sqrt{1}}{\sqrt{1800000000000000}}
Rewrite the square root of the division \sqrt{\frac{1}{1800000000000000}} as the division of square roots \frac{\sqrt{1}}{\sqrt{1800000000000000}}.
\frac{1}{\sqrt{1800000000000000}}
Calculate the square root of 1 and get 1.
\frac{1}{30000000\sqrt{2}}
Factor 1800000000000000=30000000^{2}\times 2. Rewrite the square root of the product \sqrt{30000000^{2}\times 2} as the product of square roots \sqrt{30000000^{2}}\sqrt{2}. Take the square root of 30000000^{2}.
\frac{\sqrt{2}}{30000000\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{30000000\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{30000000\times 2}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{60000000}
Multiply 30000000 and 2 to get 60000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}