Evaluate
15\sqrt{5}\approx 33.541019662
Share
Copied to clipboard
\sqrt{\frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)}{2\times 2}\times \frac{5\sqrt{5}-2\sqrt{29}+\sqrt{41}}{2}\times \frac{5\sqrt{5}+2\sqrt{29}-\sqrt{41}}{2}}
Multiply \frac{5\sqrt{5}+2\sqrt{29}+\sqrt{41}}{2} times \frac{-5\sqrt{5}+2\sqrt{29}+\sqrt{41}}{2} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)}{2\times 2\times 2}\times \frac{5\sqrt{5}+2\sqrt{29}-\sqrt{41}}{2}}
Multiply \frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)}{2\times 2} times \frac{5\sqrt{5}-2\sqrt{29}+\sqrt{41}}{2} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{2\times 2\times 2\times 2}}
Multiply \frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)}{2\times 2\times 2} times \frac{5\sqrt{5}+2\sqrt{29}-\sqrt{41}}{2} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{4\times 2\times 2}}
Multiply 2 and 2 to get 4.
\sqrt{\frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{8\times 2}}
Multiply 4 and 2 to get 8.
\sqrt{\frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Multiply 8 and 2 to get 16.
\sqrt{\frac{\left(-25\left(\sqrt{5}\right)^{2}+10\sqrt{29}\sqrt{5}+5\sqrt{5}\sqrt{41}-10\sqrt{5}\sqrt{29}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Apply the distributive property by multiplying each term of 5\sqrt{5}+2\sqrt{29}+\sqrt{41} by each term of -5\sqrt{5}+2\sqrt{29}+\sqrt{41}.
\sqrt{\frac{\left(-25\times 5+10\sqrt{29}\sqrt{5}+5\sqrt{5}\sqrt{41}-10\sqrt{5}\sqrt{29}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
The square of \sqrt{5} is 5.
\sqrt{\frac{\left(-125+10\sqrt{29}\sqrt{5}+5\sqrt{5}\sqrt{41}-10\sqrt{5}\sqrt{29}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Multiply -25 and 5 to get -125.
\sqrt{\frac{\left(-125+10\sqrt{145}+5\sqrt{5}\sqrt{41}-10\sqrt{5}\sqrt{29}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
To multiply \sqrt{29} and \sqrt{5}, multiply the numbers under the square root.
\sqrt{\frac{\left(-125+10\sqrt{145}+5\sqrt{205}-10\sqrt{5}\sqrt{29}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
To multiply \sqrt{5} and \sqrt{41}, multiply the numbers under the square root.
\sqrt{\frac{\left(-125+10\sqrt{145}+5\sqrt{205}-10\sqrt{145}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
To multiply \sqrt{5} and \sqrt{29}, multiply the numbers under the square root.
\sqrt{\frac{\left(-125+5\sqrt{205}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Combine 10\sqrt{145} and -10\sqrt{145} to get 0.
\sqrt{\frac{\left(-125+5\sqrt{205}+4\times 29+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
The square of \sqrt{29} is 29.
\sqrt{\frac{\left(-125+5\sqrt{205}+116+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Multiply 4 and 29 to get 116.
\sqrt{\frac{\left(-9+5\sqrt{205}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Add -125 and 116 to get -9.
\sqrt{\frac{\left(-9+5\sqrt{205}+2\sqrt{1189}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
To multiply \sqrt{29} and \sqrt{41}, multiply the numbers under the square root.
\sqrt{\frac{\left(-9+5\sqrt{205}+2\sqrt{1189}-5\sqrt{205}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
To multiply \sqrt{41} and \sqrt{5}, multiply the numbers under the square root.
\sqrt{\frac{\left(-9+2\sqrt{1189}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Combine 5\sqrt{205} and -5\sqrt{205} to get 0.
\sqrt{\frac{\left(-9+2\sqrt{1189}+2\sqrt{1189}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
To multiply \sqrt{41} and \sqrt{29}, multiply the numbers under the square root.
\sqrt{\frac{\left(-9+4\sqrt{1189}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Combine 2\sqrt{1189} and 2\sqrt{1189} to get 4\sqrt{1189}.
\sqrt{\frac{\left(-9+4\sqrt{1189}+41\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
The square of \sqrt{41} is 41.
\sqrt{\frac{\left(32+4\sqrt{1189}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Add -9 and 41 to get 32.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}+32\sqrt{41}+20\sqrt{5}\sqrt{1189}-8\sqrt{29}\sqrt{1189}+4\sqrt{1189}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Apply the distributive property by multiplying each term of 32+4\sqrt{1189} by each term of 5\sqrt{5}-2\sqrt{29}+\sqrt{41}.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}+32\sqrt{41}+20\sqrt{5945}-8\sqrt{29}\sqrt{1189}+4\sqrt{1189}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
To multiply \sqrt{5} and \sqrt{1189}, multiply the numbers under the square root.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}+32\sqrt{41}+20\sqrt{5945}-8\sqrt{29}\sqrt{29}\sqrt{41}+4\sqrt{1189}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Factor 1189=29\times 41. Rewrite the square root of the product \sqrt{29\times 41} as the product of square roots \sqrt{29}\sqrt{41}.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}+32\sqrt{41}+20\sqrt{5945}-8\times 29\sqrt{41}+4\sqrt{1189}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Multiply \sqrt{29} and \sqrt{29} to get 29.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}+32\sqrt{41}+20\sqrt{5945}-232\sqrt{41}+4\sqrt{1189}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Multiply -8 and 29 to get -232.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}-200\sqrt{41}+20\sqrt{5945}+4\sqrt{1189}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Combine 32\sqrt{41} and -232\sqrt{41} to get -200\sqrt{41}.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}-200\sqrt{41}+20\sqrt{5945}+4\sqrt{41}\sqrt{29}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Factor 1189=41\times 29. Rewrite the square root of the product \sqrt{41\times 29} as the product of square roots \sqrt{41}\sqrt{29}.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}-200\sqrt{41}+20\sqrt{5945}+4\times 41\sqrt{29}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Multiply \sqrt{41} and \sqrt{41} to get 41.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}-200\sqrt{41}+20\sqrt{5945}+164\sqrt{29}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Multiply 4 and 41 to get 164.
\sqrt{\frac{\left(160\sqrt{5}+100\sqrt{29}-200\sqrt{41}+20\sqrt{5945}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Combine -64\sqrt{29} and 164\sqrt{29} to get 100\sqrt{29}.
\sqrt{\frac{800\left(\sqrt{5}\right)^{2}+320\sqrt{29}\sqrt{5}-160\sqrt{5}\sqrt{41}+500\sqrt{5}\sqrt{29}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Apply the distributive property by multiplying each term of 160\sqrt{5}+100\sqrt{29}-200\sqrt{41}+20\sqrt{5945} by each term of 5\sqrt{5}+2\sqrt{29}-\sqrt{41}.
\sqrt{\frac{800\times 5+320\sqrt{29}\sqrt{5}-160\sqrt{5}\sqrt{41}+500\sqrt{5}\sqrt{29}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
The square of \sqrt{5} is 5.
\sqrt{\frac{4000+320\sqrt{29}\sqrt{5}-160\sqrt{5}\sqrt{41}+500\sqrt{5}\sqrt{29}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Multiply 800 and 5 to get 4000.
\sqrt{\frac{4000+320\sqrt{145}-160\sqrt{5}\sqrt{41}+500\sqrt{5}\sqrt{29}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
To multiply \sqrt{29} and \sqrt{5}, multiply the numbers under the square root.
\sqrt{\frac{4000+320\sqrt{145}-160\sqrt{205}+500\sqrt{5}\sqrt{29}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
To multiply \sqrt{5} and \sqrt{41}, multiply the numbers under the square root.
\sqrt{\frac{4000+320\sqrt{145}-160\sqrt{205}+500\sqrt{145}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
To multiply \sqrt{5} and \sqrt{29}, multiply the numbers under the square root.
\sqrt{\frac{4000+820\sqrt{145}-160\sqrt{205}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Combine 320\sqrt{145} and 500\sqrt{145} to get 820\sqrt{145}.
\sqrt{\frac{4000+820\sqrt{145}-160\sqrt{205}+200\times 29-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
The square of \sqrt{29} is 29.
\sqrt{\frac{4000+820\sqrt{145}-160\sqrt{205}+5800-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Multiply 200 and 29 to get 5800.
\sqrt{\frac{9800+820\sqrt{145}-160\sqrt{205}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Add 4000 and 5800 to get 9800.
\sqrt{\frac{9800+820\sqrt{145}-160\sqrt{205}-100\sqrt{1189}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
To multiply \sqrt{29} and \sqrt{41}, multiply the numbers under the square root.
\sqrt{\frac{9800+820\sqrt{145}-160\sqrt{205}-100\sqrt{1189}-1000\sqrt{205}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
To multiply \sqrt{41} and \sqrt{5}, multiply the numbers under the square root.
\sqrt{\frac{9800+820\sqrt{145}-1160\sqrt{205}-100\sqrt{1189}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Combine -160\sqrt{205} and -1000\sqrt{205} to get -1160\sqrt{205}.
\sqrt{\frac{9800+820\sqrt{145}-1160\sqrt{205}-100\sqrt{1189}-400\sqrt{1189}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
To multiply \sqrt{41} and \sqrt{29}, multiply the numbers under the square root.
\sqrt{\frac{9800+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Combine -100\sqrt{1189} and -400\sqrt{1189} to get -500\sqrt{1189}.
\sqrt{\frac{9800+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+200\times 41+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
The square of \sqrt{41} is 41.
\sqrt{\frac{9800+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+8200+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Multiply 200 and 41 to get 8200.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Add 9800 and 8200 to get 18000.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+100\sqrt{5}\sqrt{1189}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Factor 5945=5\times 1189. Rewrite the square root of the product \sqrt{5\times 1189} as the product of square roots \sqrt{5}\sqrt{1189}.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+100\times 5\sqrt{1189}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+500\sqrt{1189}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Multiply 100 and 5 to get 500.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Combine -500\sqrt{1189} and 500\sqrt{1189} to get 0.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}+40\sqrt{29}\sqrt{205}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Factor 5945=29\times 205. Rewrite the square root of the product \sqrt{29\times 205} as the product of square roots \sqrt{29}\sqrt{205}.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}+40\times 29\sqrt{205}-20\sqrt{41}\sqrt{5945}}{16}}
Multiply \sqrt{29} and \sqrt{29} to get 29.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}+1160\sqrt{205}-20\sqrt{41}\sqrt{5945}}{16}}
Multiply 40 and 29 to get 1160.
\sqrt{\frac{18000+820\sqrt{145}-20\sqrt{41}\sqrt{5945}}{16}}
Combine -1160\sqrt{205} and 1160\sqrt{205} to get 0.
\sqrt{\frac{18000+820\sqrt{145}-20\sqrt{41}\sqrt{41}\sqrt{145}}{16}}
Factor 5945=41\times 145. Rewrite the square root of the product \sqrt{41\times 145} as the product of square roots \sqrt{41}\sqrt{145}.
\sqrt{\frac{18000+820\sqrt{145}-20\times 41\sqrt{145}}{16}}
Multiply \sqrt{41} and \sqrt{41} to get 41.
\sqrt{\frac{18000+820\sqrt{145}-820\sqrt{145}}{16}}
Multiply -20 and 41 to get -820.
\sqrt{\frac{18000}{16}}
Combine 820\sqrt{145} and -820\sqrt{145} to get 0.
\sqrt{1125}
Divide 18000 by 16 to get 1125.
15\sqrt{5}
Factor 1125=15^{2}\times 5. Rewrite the square root of the product \sqrt{15^{2}\times 5} as the product of square roots \sqrt{15^{2}}\sqrt{5}. Take the square root of 15^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}