Evaluate
\frac{\sqrt{30}+2\sqrt{15}}{6}\approx 2.203865378
Share
Copied to clipboard
\frac{\sqrt{5}}{\sqrt{3}}+\sqrt{\frac{5}{6}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{\frac{5}{6}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{5}\sqrt{3}}{3}+\sqrt{\frac{5}{6}}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}}{3}+\sqrt{\frac{5}{6}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{15}}{3}+\frac{\sqrt{5}}{\sqrt{6}}
Rewrite the square root of the division \sqrt{\frac{5}{6}} as the division of square roots \frac{\sqrt{5}}{\sqrt{6}}.
\frac{\sqrt{15}}{3}+\frac{\sqrt{5}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\sqrt{15}}{3}+\frac{\sqrt{5}\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{\sqrt{15}}{3}+\frac{\sqrt{30}}{6}
To multiply \sqrt{5} and \sqrt{6}, multiply the numbers under the square root.
\frac{2\sqrt{15}}{6}+\frac{\sqrt{30}}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 6 is 6. Multiply \frac{\sqrt{15}}{3} times \frac{2}{2}.
\frac{2\sqrt{15}+\sqrt{30}}{6}
Since \frac{2\sqrt{15}}{6} and \frac{\sqrt{30}}{6} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}