Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\frac{\sqrt{5}}{\sqrt{3}}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{7}{5}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{7}{5}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\sqrt{5}\sqrt{3}}{3}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{7}{5}}
The square of \sqrt{3} is 3.
\frac{\frac{\sqrt{15}}{3}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{7}{5}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{7}}{\sqrt{3}}}\sqrt{\frac{7}{5}}
Rewrite the square root of the division \sqrt{\frac{7}{3}} as the division of square roots \frac{\sqrt{7}}{\sqrt{3}}.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}\sqrt{\frac{7}{5}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{7}\sqrt{3}}{3}}\sqrt{\frac{7}{5}}
The square of \sqrt{3} is 3.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{21}}{3}}\sqrt{\frac{7}{5}}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{15}\times 3}{3\sqrt{21}}\sqrt{\frac{7}{5}}
Divide \frac{\sqrt{15}}{3} by \frac{\sqrt{21}}{3} by multiplying \frac{\sqrt{15}}{3} by the reciprocal of \frac{\sqrt{21}}{3}.
\frac{\sqrt{15}}{\sqrt{21}}\sqrt{\frac{7}{5}}
Cancel out 3 in both numerator and denominator.
\frac{\sqrt{15}\sqrt{21}}{\left(\sqrt{21}\right)^{2}}\sqrt{\frac{7}{5}}
Rationalize the denominator of \frac{\sqrt{15}}{\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
\frac{\sqrt{15}\sqrt{21}}{21}\sqrt{\frac{7}{5}}
The square of \sqrt{21} is 21.
\frac{\sqrt{315}}{21}\sqrt{\frac{7}{5}}
To multiply \sqrt{15} and \sqrt{21}, multiply the numbers under the square root.
\frac{3\sqrt{35}}{21}\sqrt{\frac{7}{5}}
Factor 315=3^{2}\times 35. Rewrite the square root of the product \sqrt{3^{2}\times 35} as the product of square roots \sqrt{3^{2}}\sqrt{35}. Take the square root of 3^{2}.
\frac{1}{7}\sqrt{35}\sqrt{\frac{7}{5}}
Divide 3\sqrt{35} by 21 to get \frac{1}{7}\sqrt{35}.
\frac{1}{7}\sqrt{35}\times \frac{\sqrt{7}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{7}{5}} as the division of square roots \frac{\sqrt{7}}{\sqrt{5}}.
\frac{1}{7}\sqrt{35}\times \frac{\sqrt{7}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{1}{7}\sqrt{35}\times \frac{\sqrt{7}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{1}{7}\sqrt{35}\times \frac{\sqrt{35}}{5}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{35}}{7\times 5}\sqrt{35}
Multiply \frac{1}{7} times \frac{\sqrt{35}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{35}}{35}\sqrt{35}
Multiply 7 and 5 to get 35.
\frac{\sqrt{35}\sqrt{35}}{35}
Express \frac{\sqrt{35}}{35}\sqrt{35} as a single fraction.
\frac{35}{35}
Multiply \sqrt{35} and \sqrt{35} to get 35.
1
Divide 35 by 35 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}