Evaluate
\frac{5\sqrt{3}}{12}-\frac{\sqrt{2}}{6}\approx 0.485985576
Share
Copied to clipboard
\frac{\sqrt{4}}{\sqrt{3}}-\sqrt{\frac{1}{18}}+\sqrt{\frac{1}{3}}-7\sqrt{\frac{1}{48}}
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
\frac{2}{\sqrt{3}}-\sqrt{\frac{1}{18}}+\sqrt{\frac{1}{3}}-7\sqrt{\frac{1}{48}}
Calculate the square root of 4 and get 2.
\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\sqrt{\frac{1}{18}}+\sqrt{\frac{1}{3}}-7\sqrt{\frac{1}{48}}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{3}}{3}-\sqrt{\frac{1}{18}}+\sqrt{\frac{1}{3}}-7\sqrt{\frac{1}{48}}
The square of \sqrt{3} is 3.
\frac{2\sqrt{3}}{3}-\frac{\sqrt{1}}{\sqrt{18}}+\sqrt{\frac{1}{3}}-7\sqrt{\frac{1}{48}}
Rewrite the square root of the division \sqrt{\frac{1}{18}} as the division of square roots \frac{\sqrt{1}}{\sqrt{18}}.
\frac{2\sqrt{3}}{3}-\frac{1}{\sqrt{18}}+\sqrt{\frac{1}{3}}-7\sqrt{\frac{1}{48}}
Calculate the square root of 1 and get 1.
\frac{2\sqrt{3}}{3}-\frac{1}{3\sqrt{2}}+\sqrt{\frac{1}{3}}-7\sqrt{\frac{1}{48}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{2\sqrt{3}}{3}-\frac{\sqrt{2}}{3\left(\sqrt{2}\right)^{2}}+\sqrt{\frac{1}{3}}-7\sqrt{\frac{1}{48}}
Rationalize the denominator of \frac{1}{3\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{2\sqrt{3}}{3}-\frac{\sqrt{2}}{3\times 2}+\sqrt{\frac{1}{3}}-7\sqrt{\frac{1}{48}}
The square of \sqrt{2} is 2.
\frac{2\sqrt{3}}{3}-\frac{\sqrt{2}}{6}+\sqrt{\frac{1}{3}}-7\sqrt{\frac{1}{48}}
Multiply 3 and 2 to get 6.
\frac{2\sqrt{3}}{3}-\frac{\sqrt{2}}{6}+\frac{\sqrt{1}}{\sqrt{3}}-7\sqrt{\frac{1}{48}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{2\sqrt{3}}{3}-\frac{\sqrt{2}}{6}+\frac{1}{\sqrt{3}}-7\sqrt{\frac{1}{48}}
Calculate the square root of 1 and get 1.
\frac{2\sqrt{3}}{3}-\frac{\sqrt{2}}{6}+\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-7\sqrt{\frac{1}{48}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{3}}{3}-\frac{\sqrt{2}}{6}+\frac{\sqrt{3}}{3}-7\sqrt{\frac{1}{48}}
The square of \sqrt{3} is 3.
\sqrt{3}-\frac{\sqrt{2}}{6}-7\sqrt{\frac{1}{48}}
Combine \frac{2\sqrt{3}}{3} and \frac{\sqrt{3}}{3} to get \sqrt{3}.
\sqrt{3}-\frac{\sqrt{2}}{6}-7\times \frac{\sqrt{1}}{\sqrt{48}}
Rewrite the square root of the division \sqrt{\frac{1}{48}} as the division of square roots \frac{\sqrt{1}}{\sqrt{48}}.
\sqrt{3}-\frac{\sqrt{2}}{6}-7\times \frac{1}{\sqrt{48}}
Calculate the square root of 1 and get 1.
\sqrt{3}-\frac{\sqrt{2}}{6}-7\times \frac{1}{4\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\sqrt{3}-\frac{\sqrt{2}}{6}-7\times \frac{\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{4\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{3}-\frac{\sqrt{2}}{6}-7\times \frac{\sqrt{3}}{4\times 3}
The square of \sqrt{3} is 3.
\sqrt{3}-\frac{\sqrt{2}}{6}-7\times \frac{\sqrt{3}}{12}
Multiply 4 and 3 to get 12.
\sqrt{3}-\frac{\sqrt{2}}{6}+\frac{-7\sqrt{3}}{12}
Express -7\times \frac{\sqrt{3}}{12} as a single fraction.
\frac{6\sqrt{3}}{6}-\frac{\sqrt{2}}{6}+\frac{-7\sqrt{3}}{12}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{6}{6}.
\frac{6\sqrt{3}-\sqrt{2}}{6}+\frac{-7\sqrt{3}}{12}
Since \frac{6\sqrt{3}}{6} and \frac{\sqrt{2}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{2\left(6\sqrt{3}-\sqrt{2}\right)}{12}+\frac{-7\sqrt{3}}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 12 is 12. Multiply \frac{6\sqrt{3}-\sqrt{2}}{6} times \frac{2}{2}.
\frac{2\left(6\sqrt{3}-\sqrt{2}\right)-7\sqrt{3}}{12}
Since \frac{2\left(6\sqrt{3}-\sqrt{2}\right)}{12} and \frac{-7\sqrt{3}}{12} have the same denominator, add them by adding their numerators.
\frac{12\sqrt{3}-2\sqrt{2}-7\sqrt{3}}{12}
Do the multiplications in 2\left(6\sqrt{3}-\sqrt{2}\right)-7\sqrt{3}.
\frac{5\sqrt{3}-2\sqrt{2}}{12}
Do the calculations in 12\sqrt{3}-2\sqrt{2}-7\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}