Evaluate
\frac{200\sqrt{214305}}{3297}\approx 28.081946034
Share
Copied to clipboard
\sqrt{\frac{52000}{3.14\times 21}}
Multiply 3250 and 16 to get 52000.
\sqrt{\frac{52000}{65.94}}
Multiply 3.14 and 21 to get 65.94.
\sqrt{\frac{5200000}{6594}}
Expand \frac{52000}{65.94} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{2600000}{3297}}
Reduce the fraction \frac{5200000}{6594} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{2600000}}{\sqrt{3297}}
Rewrite the square root of the division \sqrt{\frac{2600000}{3297}} as the division of square roots \frac{\sqrt{2600000}}{\sqrt{3297}}.
\frac{200\sqrt{65}}{\sqrt{3297}}
Factor 2600000=200^{2}\times 65. Rewrite the square root of the product \sqrt{200^{2}\times 65} as the product of square roots \sqrt{200^{2}}\sqrt{65}. Take the square root of 200^{2}.
\frac{200\sqrt{65}\sqrt{3297}}{\left(\sqrt{3297}\right)^{2}}
Rationalize the denominator of \frac{200\sqrt{65}}{\sqrt{3297}} by multiplying numerator and denominator by \sqrt{3297}.
\frac{200\sqrt{65}\sqrt{3297}}{3297}
The square of \sqrt{3297} is 3297.
\frac{200\sqrt{214305}}{3297}
To multiply \sqrt{65} and \sqrt{3297}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}