Evaluate
\frac{\sqrt{1808898}}{3640000000000}\approx 3.69492524 \cdot 10^{-10}
Share
Copied to clipboard
\sqrt{\frac{3\times 6626\times 10^{-34}}{8\times 91\times 10^{-14}\times 2}}
To multiply powers of the same base, add their exponents. Add -28 and 14 to get -14.
\sqrt{\frac{3\times 3313\times 10^{-34}}{2\times 4\times 91\times 10^{-14}}}
Cancel out 2 in both numerator and denominator.
\sqrt{\frac{3\times 3313}{2\times 4\times 91\times 10^{20}}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\sqrt{\frac{9939}{2\times 4\times 91\times 10^{20}}}
Multiply 3 and 3313 to get 9939.
\sqrt{\frac{9939}{8\times 91\times 10^{20}}}
Multiply 2 and 4 to get 8.
\sqrt{\frac{9939}{728\times 10^{20}}}
Multiply 8 and 91 to get 728.
\sqrt{\frac{9939}{728\times 100000000000000000000}}
Calculate 10 to the power of 20 and get 100000000000000000000.
\sqrt{\frac{9939}{72800000000000000000000}}
Multiply 728 and 100000000000000000000 to get 72800000000000000000000.
\frac{\sqrt{9939}}{\sqrt{72800000000000000000000}}
Rewrite the square root of the division \sqrt{\frac{9939}{72800000000000000000000}} as the division of square roots \frac{\sqrt{9939}}{\sqrt{72800000000000000000000}}.
\frac{\sqrt{9939}}{20000000000\sqrt{182}}
Factor 72800000000000000000000=20000000000^{2}\times 182. Rewrite the square root of the product \sqrt{20000000000^{2}\times 182} as the product of square roots \sqrt{20000000000^{2}}\sqrt{182}. Take the square root of 20000000000^{2}.
\frac{\sqrt{9939}\sqrt{182}}{20000000000\left(\sqrt{182}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{9939}}{20000000000\sqrt{182}} by multiplying numerator and denominator by \sqrt{182}.
\frac{\sqrt{9939}\sqrt{182}}{20000000000\times 182}
The square of \sqrt{182} is 182.
\frac{\sqrt{1808898}}{20000000000\times 182}
To multiply \sqrt{9939} and \sqrt{182}, multiply the numbers under the square root.
\frac{\sqrt{1808898}}{3640000000000}
Multiply 20000000000 and 182 to get 3640000000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}