Evaluate
\frac{3\sqrt{2}}{10}\approx 0.424264069
Share
Copied to clipboard
\sqrt{\frac{3}{800}}\sqrt{48}
To multiply \sqrt{\frac{3}{16}} and \sqrt{\frac{1}{50}}, multiply the numbers under the square root.
\frac{\sqrt{3}}{\sqrt{800}}\sqrt{48}
Rewrite the square root of the division \sqrt{\frac{3}{800}} as the division of square roots \frac{\sqrt{3}}{\sqrt{800}}.
\frac{\sqrt{3}}{20\sqrt{2}}\sqrt{48}
Factor 800=20^{2}\times 2. Rewrite the square root of the product \sqrt{20^{2}\times 2} as the product of square roots \sqrt{20^{2}}\sqrt{2}. Take the square root of 20^{2}.
\frac{\sqrt{3}\sqrt{2}}{20\left(\sqrt{2}\right)^{2}}\sqrt{48}
Rationalize the denominator of \frac{\sqrt{3}}{20\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{3}\sqrt{2}}{20\times 2}\sqrt{48}
The square of \sqrt{2} is 2.
\frac{\sqrt{6}}{20\times 2}\sqrt{48}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{6}}{40}\sqrt{48}
Multiply 20 and 2 to get 40.
\frac{\sqrt{6}}{40}\times 4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\sqrt{6}}{10}\sqrt{3}
Cancel out 40, the greatest common factor in 4 and 40.
\frac{\sqrt{6}\sqrt{3}}{10}
Express \frac{\sqrt{6}}{10}\sqrt{3} as a single fraction.
\frac{\sqrt{3}\sqrt{2}\sqrt{3}}{10}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{3\sqrt{2}}{10}
Multiply \sqrt{3} and \sqrt{3} to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}