Evaluate (complex solution)
\frac{590\sqrt{21}i}{21}\approx 128.748555239i
Real Part (complex solution)
0
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
59\sqrt{\frac{25}{\frac{3}{4}-\frac{24}{4}}}
Convert 6 to fraction \frac{24}{4}.
59\sqrt{\frac{25}{\frac{3-24}{4}}}
Since \frac{3}{4} and \frac{24}{4} have the same denominator, subtract them by subtracting their numerators.
59\sqrt{\frac{25}{-\frac{21}{4}}}
Subtract 24 from 3 to get -21.
59\sqrt{25\left(-\frac{4}{21}\right)}
Divide 25 by -\frac{21}{4} by multiplying 25 by the reciprocal of -\frac{21}{4}.
59\sqrt{\frac{25\left(-4\right)}{21}}
Express 25\left(-\frac{4}{21}\right) as a single fraction.
59\sqrt{\frac{-100}{21}}
Multiply 25 and -4 to get -100.
59\sqrt{-\frac{100}{21}}
Fraction \frac{-100}{21} can be rewritten as -\frac{100}{21} by extracting the negative sign.
59\times \frac{\sqrt{-100}}{\sqrt{21}}
Rewrite the square root of the division \sqrt{-\frac{100}{21}} as the division of square roots \frac{\sqrt{-100}}{\sqrt{21}}.
59\times \frac{10i}{\sqrt{21}}
Calculate the square root of -100 and get 10i.
59\times \frac{10i\sqrt{21}}{\left(\sqrt{21}\right)^{2}}
Rationalize the denominator of \frac{10i}{\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
59\times \frac{10i\sqrt{21}}{21}
The square of \sqrt{21} is 21.
59\times \left(\frac{10}{21}i\right)\sqrt{21}
Divide 10i\sqrt{21} by 21 to get \frac{10}{21}i\sqrt{21}.
\frac{590}{21}i\sqrt{21}
Multiply 59 and \frac{10}{21}i to get \frac{590}{21}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}