Evaluate
\frac{\sqrt{28811618}}{796}\approx 6.743273216
Share
Copied to clipboard
\sqrt{\frac{79867000-8835^{2}}{200\left(200-1\right)}}
Multiply 200 and 399335 to get 79867000.
\sqrt{\frac{79867000-78057225}{200\left(200-1\right)}}
Calculate 8835 to the power of 2 and get 78057225.
\sqrt{\frac{1809775}{200\left(200-1\right)}}
Subtract 78057225 from 79867000 to get 1809775.
\sqrt{\frac{1809775}{200\times 199}}
Subtract 1 from 200 to get 199.
\sqrt{\frac{1809775}{39800}}
Multiply 200 and 199 to get 39800.
\sqrt{\frac{72391}{1592}}
Reduce the fraction \frac{1809775}{39800} to lowest terms by extracting and canceling out 25.
\frac{\sqrt{72391}}{\sqrt{1592}}
Rewrite the square root of the division \sqrt{\frac{72391}{1592}} as the division of square roots \frac{\sqrt{72391}}{\sqrt{1592}}.
\frac{\sqrt{72391}}{2\sqrt{398}}
Factor 1592=2^{2}\times 398. Rewrite the square root of the product \sqrt{2^{2}\times 398} as the product of square roots \sqrt{2^{2}}\sqrt{398}. Take the square root of 2^{2}.
\frac{\sqrt{72391}\sqrt{398}}{2\left(\sqrt{398}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{72391}}{2\sqrt{398}} by multiplying numerator and denominator by \sqrt{398}.
\frac{\sqrt{72391}\sqrt{398}}{2\times 398}
The square of \sqrt{398} is 398.
\frac{\sqrt{28811618}}{2\times 398}
To multiply \sqrt{72391} and \sqrt{398}, multiply the numbers under the square root.
\frac{\sqrt{28811618}}{796}
Multiply 2 and 398 to get 796.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}