Evaluate
\frac{1000000\sqrt{12194}}{91}\approx 1213477.429756101
Share
Copied to clipboard
\sqrt{\frac{2\times 6.7\times 10^{12}}{9.1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\sqrt{\frac{13.4\times 10^{12}}{9.1}}
Multiply 2 and 6.7 to get 13.4.
\sqrt{\frac{13.4\times 1000000000000}{9.1}}
Calculate 10 to the power of 12 and get 1000000000000.
\sqrt{\frac{13400000000000}{9.1}}
Multiply 13.4 and 1000000000000 to get 13400000000000.
\sqrt{\frac{134000000000000}{91}}
Expand \frac{13400000000000}{9.1} by multiplying both numerator and the denominator by 10.
\frac{\sqrt{134000000000000}}{\sqrt{91}}
Rewrite the square root of the division \sqrt{\frac{134000000000000}{91}} as the division of square roots \frac{\sqrt{134000000000000}}{\sqrt{91}}.
\frac{1000000\sqrt{134}}{\sqrt{91}}
Factor 134000000000000=1000000^{2}\times 134. Rewrite the square root of the product \sqrt{1000000^{2}\times 134} as the product of square roots \sqrt{1000000^{2}}\sqrt{134}. Take the square root of 1000000^{2}.
\frac{1000000\sqrt{134}\sqrt{91}}{\left(\sqrt{91}\right)^{2}}
Rationalize the denominator of \frac{1000000\sqrt{134}}{\sqrt{91}} by multiplying numerator and denominator by \sqrt{91}.
\frac{1000000\sqrt{134}\sqrt{91}}{91}
The square of \sqrt{91} is 91.
\frac{1000000\sqrt{12194}}{91}
To multiply \sqrt{134} and \sqrt{91}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}