Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{3000\times 140000}{220}+7500\times 7500}
Multiply 2 and 1500 to get 3000.
\sqrt{\frac{420000000}{220}+7500\times 7500}
Multiply 3000 and 140000 to get 420000000.
\sqrt{\frac{21000000}{11}+7500\times 7500}
Reduce the fraction \frac{420000000}{220} to lowest terms by extracting and canceling out 20.
\sqrt{\frac{21000000}{11}+56250000}
Multiply 7500 and 7500 to get 56250000.
\sqrt{\frac{21000000}{11}+\frac{618750000}{11}}
Convert 56250000 to fraction \frac{618750000}{11}.
\sqrt{\frac{21000000+618750000}{11}}
Since \frac{21000000}{11} and \frac{618750000}{11} have the same denominator, add them by adding their numerators.
\sqrt{\frac{639750000}{11}}
Add 21000000 and 618750000 to get 639750000.
\frac{\sqrt{639750000}}{\sqrt{11}}
Rewrite the square root of the division \sqrt{\frac{639750000}{11}} as the division of square roots \frac{\sqrt{639750000}}{\sqrt{11}}.
\frac{500\sqrt{2559}}{\sqrt{11}}
Factor 639750000=500^{2}\times 2559. Rewrite the square root of the product \sqrt{500^{2}\times 2559} as the product of square roots \sqrt{500^{2}}\sqrt{2559}. Take the square root of 500^{2}.
\frac{500\sqrt{2559}\sqrt{11}}{\left(\sqrt{11}\right)^{2}}
Rationalize the denominator of \frac{500\sqrt{2559}}{\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{500\sqrt{2559}\sqrt{11}}{11}
The square of \sqrt{11} is 11.
\frac{500\sqrt{28149}}{11}
To multiply \sqrt{2559} and \sqrt{11}, multiply the numbers under the square root.