Evaluate
\frac{8\sqrt{66}}{3}\approx 21.664102412
Share
Copied to clipboard
\sqrt{\frac{2\sqrt{273}+6}{3}\left(\frac{2\sqrt{273}+6}{3}-\frac{2\sqrt{273}}{3}\right)^{2}\left(\frac{2\sqrt{273}+6}{3}-4\right)}
Multiply \frac{2\sqrt{273}+6}{3}-\frac{2\sqrt{273}}{3} and \frac{2\sqrt{273}+6}{3}-\frac{2\sqrt{273}}{3} to get \left(\frac{2\sqrt{273}+6}{3}-\frac{2\sqrt{273}}{3}\right)^{2}.
\sqrt{\frac{2\sqrt{273}+6}{3}\times \left(\frac{2\sqrt{273}+6-2\sqrt{273}}{3}\right)^{2}\left(\frac{2\sqrt{273}+6}{3}-4\right)}
Since \frac{2\sqrt{273}+6}{3} and \frac{2\sqrt{273}}{3} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{2\sqrt{273}+6}{3}\times \left(\frac{6}{3}\right)^{2}\left(\frac{2\sqrt{273}+6}{3}-4\right)}
Do the calculations in 2\sqrt{273}+6-2\sqrt{273}.
\sqrt{\frac{2\sqrt{273}+6}{3}\times \frac{6^{2}}{3^{2}}\left(\frac{2\sqrt{273}+6}{3}-4\right)}
To raise \frac{6}{3} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{2\sqrt{273}+6}{3}\times \frac{6^{2}}{3^{2}}\left(\frac{2\sqrt{273}+6}{3}-\frac{4\times 3}{3}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{3}{3}.
\sqrt{\frac{2\sqrt{273}+6}{3}\times \frac{6^{2}}{3^{2}}\times \frac{2\sqrt{273}+6-4\times 3}{3}}
Since \frac{2\sqrt{273}+6}{3} and \frac{4\times 3}{3} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{2\sqrt{273}+6}{3}\times \frac{6^{2}}{3^{2}}\times \frac{2\sqrt{273}+6-12}{3}}
Do the multiplications in 2\sqrt{273}+6-4\times 3.
\sqrt{\frac{2\sqrt{273}+6}{3}\times \frac{6^{2}}{3^{2}}\times \frac{2\sqrt{273}-6}{3}}
Do the calculations in 2\sqrt{273}+6-12.
\sqrt{\frac{\left(2\sqrt{273}+6\right)\times 6^{2}}{3\times 3^{2}}\times \frac{2\sqrt{273}-6}{3}}
Multiply \frac{2\sqrt{273}+6}{3} times \frac{6^{2}}{3^{2}} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\left(2\sqrt{273}+6\right)\times 6^{2}\left(2\sqrt{273}-6\right)}{3\times 3^{2}\times 3}}
Multiply \frac{\left(2\sqrt{273}+6\right)\times 6^{2}}{3\times 3^{2}} times \frac{2\sqrt{273}-6}{3} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\left(2\sqrt{273}+6\right)\times 6^{2}\left(2\sqrt{273}-6\right)}{3^{3}\times 3}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\sqrt{\frac{\left(2\sqrt{273}+6\right)\times 6^{2}\left(2\sqrt{273}-6\right)}{3^{4}}}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\sqrt{\frac{\left(2\sqrt{273}+6\right)\times 36\left(2\sqrt{273}-6\right)}{3^{4}}}
Calculate 6 to the power of 2 and get 36.
\sqrt{\frac{\left(2\sqrt{273}+6\right)\times 36\left(2\sqrt{273}-6\right)}{81}}
Calculate 3 to the power of 4 and get 81.
\sqrt{\left(2\sqrt{273}+6\right)\times \frac{4}{9}\left(2\sqrt{273}-6\right)}
Divide \left(2\sqrt{273}+6\right)\times 36\left(2\sqrt{273}-6\right) by 81 to get \left(2\sqrt{273}+6\right)\times \frac{4}{9}\left(2\sqrt{273}-6\right).
\sqrt{\left(2\sqrt{273}\times \frac{4}{9}+6\times \frac{4}{9}\right)\left(2\sqrt{273}-6\right)}
Use the distributive property to multiply 2\sqrt{273}+6 by \frac{4}{9}.
\sqrt{\left(\frac{2\times 4}{9}\sqrt{273}+6\times \frac{4}{9}\right)\left(2\sqrt{273}-6\right)}
Express 2\times \frac{4}{9} as a single fraction.
\sqrt{\left(\frac{8}{9}\sqrt{273}+6\times \frac{4}{9}\right)\left(2\sqrt{273}-6\right)}
Multiply 2 and 4 to get 8.
\sqrt{\left(\frac{8}{9}\sqrt{273}+\frac{6\times 4}{9}\right)\left(2\sqrt{273}-6\right)}
Express 6\times \frac{4}{9} as a single fraction.
\sqrt{\left(\frac{8}{9}\sqrt{273}+\frac{24}{9}\right)\left(2\sqrt{273}-6\right)}
Multiply 6 and 4 to get 24.
\sqrt{\left(\frac{8}{9}\sqrt{273}+\frac{8}{3}\right)\left(2\sqrt{273}-6\right)}
Reduce the fraction \frac{24}{9} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{8}{9}\sqrt{273}\times 2\sqrt{273}+\frac{8}{9}\sqrt{273}\left(-6\right)+\frac{8}{3}\times 2\sqrt{273}+\frac{8}{3}\left(-6\right)}
Apply the distributive property by multiplying each term of \frac{8}{9}\sqrt{273}+\frac{8}{3} by each term of 2\sqrt{273}-6.
\sqrt{\frac{8}{9}\times 273\times 2+\frac{8}{9}\sqrt{273}\left(-6\right)+\frac{8}{3}\times 2\sqrt{273}+\frac{8}{3}\left(-6\right)}
Multiply \sqrt{273} and \sqrt{273} to get 273.
\sqrt{\frac{8\times 273}{9}\times 2+\frac{8}{9}\sqrt{273}\left(-6\right)+\frac{8}{3}\times 2\sqrt{273}+\frac{8}{3}\left(-6\right)}
Express \frac{8}{9}\times 273 as a single fraction.
\sqrt{\frac{2184}{9}\times 2+\frac{8}{9}\sqrt{273}\left(-6\right)+\frac{8}{3}\times 2\sqrt{273}+\frac{8}{3}\left(-6\right)}
Multiply 8 and 273 to get 2184.
\sqrt{\frac{728}{3}\times 2+\frac{8}{9}\sqrt{273}\left(-6\right)+\frac{8}{3}\times 2\sqrt{273}+\frac{8}{3}\left(-6\right)}
Reduce the fraction \frac{2184}{9} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{728\times 2}{3}+\frac{8}{9}\sqrt{273}\left(-6\right)+\frac{8}{3}\times 2\sqrt{273}+\frac{8}{3}\left(-6\right)}
Express \frac{728}{3}\times 2 as a single fraction.
\sqrt{\frac{1456}{3}+\frac{8}{9}\sqrt{273}\left(-6\right)+\frac{8}{3}\times 2\sqrt{273}+\frac{8}{3}\left(-6\right)}
Multiply 728 and 2 to get 1456.
\sqrt{\frac{1456}{3}+\frac{8\left(-6\right)}{9}\sqrt{273}+\frac{8}{3}\times 2\sqrt{273}+\frac{8}{3}\left(-6\right)}
Express \frac{8}{9}\left(-6\right) as a single fraction.
\sqrt{\frac{1456}{3}+\frac{-48}{9}\sqrt{273}+\frac{8}{3}\times 2\sqrt{273}+\frac{8}{3}\left(-6\right)}
Multiply 8 and -6 to get -48.
\sqrt{\frac{1456}{3}-\frac{16}{3}\sqrt{273}+\frac{8}{3}\times 2\sqrt{273}+\frac{8}{3}\left(-6\right)}
Reduce the fraction \frac{-48}{9} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{1456}{3}-\frac{16}{3}\sqrt{273}+\frac{8\times 2}{3}\sqrt{273}+\frac{8}{3}\left(-6\right)}
Express \frac{8}{3}\times 2 as a single fraction.
\sqrt{\frac{1456}{3}-\frac{16}{3}\sqrt{273}+\frac{16}{3}\sqrt{273}+\frac{8}{3}\left(-6\right)}
Multiply 8 and 2 to get 16.
\sqrt{\frac{1456}{3}+\frac{8}{3}\left(-6\right)}
Combine -\frac{16}{3}\sqrt{273} and \frac{16}{3}\sqrt{273} to get 0.
\sqrt{\frac{1456}{3}+\frac{8\left(-6\right)}{3}}
Express \frac{8}{3}\left(-6\right) as a single fraction.
\sqrt{\frac{1456}{3}+\frac{-48}{3}}
Multiply 8 and -6 to get -48.
\sqrt{\frac{1456}{3}-16}
Divide -48 by 3 to get -16.
\sqrt{\frac{1456}{3}-\frac{48}{3}}
Convert 16 to fraction \frac{48}{3}.
\sqrt{\frac{1456-48}{3}}
Since \frac{1456}{3} and \frac{48}{3} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{1408}{3}}
Subtract 48 from 1456 to get 1408.
\frac{\sqrt{1408}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{1408}{3}} as the division of square roots \frac{\sqrt{1408}}{\sqrt{3}}.
\frac{8\sqrt{22}}{\sqrt{3}}
Factor 1408=8^{2}\times 22. Rewrite the square root of the product \sqrt{8^{2}\times 22} as the product of square roots \sqrt{8^{2}}\sqrt{22}. Take the square root of 8^{2}.
\frac{8\sqrt{22}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{8\sqrt{22}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{8\sqrt{22}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{8\sqrt{66}}{3}
To multiply \sqrt{22} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}