Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{11}{9.81}}
Multiply 2 and 5.5 to get 11.
\sqrt{\frac{1100}{981}}
Expand \frac{11}{9.81} by multiplying both numerator and the denominator by 100.
\frac{\sqrt{1100}}{\sqrt{981}}
Rewrite the square root of the division \sqrt{\frac{1100}{981}} as the division of square roots \frac{\sqrt{1100}}{\sqrt{981}}.
\frac{10\sqrt{11}}{\sqrt{981}}
Factor 1100=10^{2}\times 11. Rewrite the square root of the product \sqrt{10^{2}\times 11} as the product of square roots \sqrt{10^{2}}\sqrt{11}. Take the square root of 10^{2}.
\frac{10\sqrt{11}}{3\sqrt{109}}
Factor 981=3^{2}\times 109. Rewrite the square root of the product \sqrt{3^{2}\times 109} as the product of square roots \sqrt{3^{2}}\sqrt{109}. Take the square root of 3^{2}.
\frac{10\sqrt{11}\sqrt{109}}{3\left(\sqrt{109}\right)^{2}}
Rationalize the denominator of \frac{10\sqrt{11}}{3\sqrt{109}} by multiplying numerator and denominator by \sqrt{109}.
\frac{10\sqrt{11}\sqrt{109}}{3\times 109}
The square of \sqrt{109} is 109.
\frac{10\sqrt{1199}}{3\times 109}
To multiply \sqrt{11} and \sqrt{109}, multiply the numbers under the square root.
\frac{10\sqrt{1199}}{327}
Multiply 3 and 109 to get 327.