Evaluate
\frac{10\sqrt{1199}}{327}\approx 1.058916801
Share
Copied to clipboard
\sqrt{\frac{11}{9.81}}
Multiply 2 and 5.5 to get 11.
\sqrt{\frac{1100}{981}}
Expand \frac{11}{9.81} by multiplying both numerator and the denominator by 100.
\frac{\sqrt{1100}}{\sqrt{981}}
Rewrite the square root of the division \sqrt{\frac{1100}{981}} as the division of square roots \frac{\sqrt{1100}}{\sqrt{981}}.
\frac{10\sqrt{11}}{\sqrt{981}}
Factor 1100=10^{2}\times 11. Rewrite the square root of the product \sqrt{10^{2}\times 11} as the product of square roots \sqrt{10^{2}}\sqrt{11}. Take the square root of 10^{2}.
\frac{10\sqrt{11}}{3\sqrt{109}}
Factor 981=3^{2}\times 109. Rewrite the square root of the product \sqrt{3^{2}\times 109} as the product of square roots \sqrt{3^{2}}\sqrt{109}. Take the square root of 3^{2}.
\frac{10\sqrt{11}\sqrt{109}}{3\left(\sqrt{109}\right)^{2}}
Rationalize the denominator of \frac{10\sqrt{11}}{3\sqrt{109}} by multiplying numerator and denominator by \sqrt{109}.
\frac{10\sqrt{11}\sqrt{109}}{3\times 109}
The square of \sqrt{109} is 109.
\frac{10\sqrt{1199}}{3\times 109}
To multiply \sqrt{11} and \sqrt{109}, multiply the numbers under the square root.
\frac{10\sqrt{1199}}{327}
Multiply 3 and 109 to get 327.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}