Evaluate
\frac{20\sqrt{938490}}{861}\approx 22.503064703
Share
Copied to clipboard
\sqrt{\frac{2\times 9.81}{0.45\times 0.07\times 1.23}}
Multiply 2 and 1 to get 2.
\sqrt{\frac{19.62}{0.45\times 0.07\times 1.23}}
Multiply 2 and 9.81 to get 19.62.
\sqrt{\frac{19.62}{0.0315\times 1.23}}
Multiply 0.45 and 0.07 to get 0.0315.
\sqrt{\frac{19.62}{0.038745}}
Multiply 0.0315 and 1.23 to get 0.038745.
\sqrt{\frac{19620000}{38745}}
Expand \frac{19.62}{0.038745} by multiplying both numerator and the denominator by 1000000.
\sqrt{\frac{436000}{861}}
Reduce the fraction \frac{19620000}{38745} to lowest terms by extracting and canceling out 45.
\frac{\sqrt{436000}}{\sqrt{861}}
Rewrite the square root of the division \sqrt{\frac{436000}{861}} as the division of square roots \frac{\sqrt{436000}}{\sqrt{861}}.
\frac{20\sqrt{1090}}{\sqrt{861}}
Factor 436000=20^{2}\times 1090. Rewrite the square root of the product \sqrt{20^{2}\times 1090} as the product of square roots \sqrt{20^{2}}\sqrt{1090}. Take the square root of 20^{2}.
\frac{20\sqrt{1090}\sqrt{861}}{\left(\sqrt{861}\right)^{2}}
Rationalize the denominator of \frac{20\sqrt{1090}}{\sqrt{861}} by multiplying numerator and denominator by \sqrt{861}.
\frac{20\sqrt{1090}\sqrt{861}}{861}
The square of \sqrt{861} is 861.
\frac{20\sqrt{938490}}{861}
To multiply \sqrt{1090} and \sqrt{861}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}