Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{2}}{\sqrt{3}}-\sqrt{216}+24\sqrt{\frac{1}{6}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\sqrt{216}+24\sqrt{\frac{1}{6}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{2}\sqrt{3}}{3}-\sqrt{216}+24\sqrt{\frac{1}{6}}
The square of \sqrt{3} is 3.
\frac{\sqrt{6}}{3}-\sqrt{216}+24\sqrt{\frac{1}{6}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{6}}{3}-6\sqrt{6}+24\sqrt{\frac{1}{6}}
Factor 216=6^{2}\times 6. Rewrite the square root of the product \sqrt{6^{2}\times 6} as the product of square roots \sqrt{6^{2}}\sqrt{6}. Take the square root of 6^{2}.
-\frac{17}{3}\sqrt{6}+24\sqrt{\frac{1}{6}}
Combine \frac{\sqrt{6}}{3} and -6\sqrt{6} to get -\frac{17}{3}\sqrt{6}.
-\frac{17}{3}\sqrt{6}+24\times \frac{\sqrt{1}}{\sqrt{6}}
Rewrite the square root of the division \sqrt{\frac{1}{6}} as the division of square roots \frac{\sqrt{1}}{\sqrt{6}}.
-\frac{17}{3}\sqrt{6}+24\times \frac{1}{\sqrt{6}}
Calculate the square root of 1 and get 1.
-\frac{17}{3}\sqrt{6}+24\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
-\frac{17}{3}\sqrt{6}+24\times \frac{\sqrt{6}}{6}
The square of \sqrt{6} is 6.
-\frac{17}{3}\sqrt{6}+4\sqrt{6}
Cancel out 6, the greatest common factor in 24 and 6.
-\frac{5}{3}\sqrt{6}
Combine -\frac{17}{3}\sqrt{6} and 4\sqrt{6} to get -\frac{5}{3}\sqrt{6}.