Evaluate
\frac{37500000\sqrt{40254016904374002}}{61550484563263}\approx 122.237484406
Share
Copied to clipboard
\sqrt{\frac{1500 \cdot 9.81}{0.984807753012208}}
Evaluate trigonometric functions in the problem
\sqrt{\frac{14715}{0.984807753012208}}
Multiply 1500 and 9.81 to get 14715.
\sqrt{\frac{14715000000000000000}{984807753012208}}
Expand \frac{14715}{0.984807753012208} by multiplying both numerator and the denominator by 1000000000000000.
\sqrt{\frac{919687500000000000}{61550484563263}}
Reduce the fraction \frac{14715000000000000000}{984807753012208} to lowest terms by extracting and canceling out 16.
\frac{\sqrt{919687500000000000}}{\sqrt{61550484563263}}
Rewrite the square root of the division \sqrt{\frac{919687500000000000}{61550484563263}} as the division of square roots \frac{\sqrt{919687500000000000}}{\sqrt{61550484563263}}.
\frac{37500000\sqrt{654}}{\sqrt{61550484563263}}
Factor 919687500000000000=37500000^{2}\times 654. Rewrite the square root of the product \sqrt{37500000^{2}\times 654} as the product of square roots \sqrt{37500000^{2}}\sqrt{654}. Take the square root of 37500000^{2}.
\frac{37500000\sqrt{654}\sqrt{61550484563263}}{\left(\sqrt{61550484563263}\right)^{2}}
Rationalize the denominator of \frac{37500000\sqrt{654}}{\sqrt{61550484563263}} by multiplying numerator and denominator by \sqrt{61550484563263}.
\frac{37500000\sqrt{654}\sqrt{61550484563263}}{61550484563263}
The square of \sqrt{61550484563263} is 61550484563263.
\frac{37500000\sqrt{40254016904374002}}{61550484563263}
To multiply \sqrt{654} and \sqrt{61550484563263}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}