Evaluate
\frac{\sqrt{15334}}{22}\approx 5.628660425
Share
Copied to clipboard
\sqrt{\frac{15}{36-7\times 2}+31}
Calculate 6 to the power of 2 and get 36.
\sqrt{\frac{15}{36-14}+31}
Multiply 7 and 2 to get 14.
\sqrt{\frac{15}{22}+31}
Subtract 14 from 36 to get 22.
\sqrt{\frac{15}{22}+\frac{682}{22}}
Convert 31 to fraction \frac{682}{22}.
\sqrt{\frac{15+682}{22}}
Since \frac{15}{22} and \frac{682}{22} have the same denominator, add them by adding their numerators.
\sqrt{\frac{697}{22}}
Add 15 and 682 to get 697.
\frac{\sqrt{697}}{\sqrt{22}}
Rewrite the square root of the division \sqrt{\frac{697}{22}} as the division of square roots \frac{\sqrt{697}}{\sqrt{22}}.
\frac{\sqrt{697}\sqrt{22}}{\left(\sqrt{22}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{697}}{\sqrt{22}} by multiplying numerator and denominator by \sqrt{22}.
\frac{\sqrt{697}\sqrt{22}}{22}
The square of \sqrt{22} is 22.
\frac{\sqrt{15334}}{22}
To multiply \sqrt{697} and \sqrt{22}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}