Evaluate
\frac{12}{11}\approx 1.090909091
Factor
\frac{2 ^ {2} \cdot 3}{11} = 1\frac{1}{11} = 1.0909090909090908
Share
Copied to clipboard
\sqrt{\frac{143}{66}-\frac{35}{66}+\frac{27}{121}\times \frac{5}{3}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)}
Least common multiple of 6 and 66 is 66. Convert \frac{13}{6} and \frac{35}{66} to fractions with denominator 66.
\sqrt{\frac{143-35}{66}+\frac{27}{121}\times \frac{5}{3}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)}
Since \frac{143}{66} and \frac{35}{66} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{108}{66}+\frac{27}{121}\times \frac{5}{3}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)}
Subtract 35 from 143 to get 108.
\sqrt{\frac{18}{11}+\frac{27}{121}\times \frac{5}{3}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)}
Reduce the fraction \frac{108}{66} to lowest terms by extracting and canceling out 6.
\sqrt{\frac{18}{11}+\frac{27\times 5}{121\times 3}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)}
Multiply \frac{27}{121} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{18}{11}+\frac{135}{363}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)}
Do the multiplications in the fraction \frac{27\times 5}{121\times 3}.
\sqrt{\frac{18}{11}+\frac{45}{121}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)}
Reduce the fraction \frac{135}{363} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{198}{121}+\frac{45}{121}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)}
Least common multiple of 11 and 121 is 121. Convert \frac{18}{11} and \frac{45}{121} to fractions with denominator 121.
\sqrt{\frac{198+45}{121}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)}
Since \frac{198}{121} and \frac{45}{121} have the same denominator, add them by adding their numerators.
\sqrt{\frac{243}{121}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)}
Add 198 and 45 to get 243.
\sqrt{\frac{243}{121}-\left(\frac{154}{165}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)}
Least common multiple of 15 and 165 is 165. Convert \frac{14}{15} and \frac{8}{165} to fractions with denominator 165.
\sqrt{\frac{243}{121}-\frac{154+8}{165}\left(\frac{2}{9}+\frac{11}{18}\right)}
Since \frac{154}{165} and \frac{8}{165} have the same denominator, add them by adding their numerators.
\sqrt{\frac{243}{121}-\frac{162}{165}\left(\frac{2}{9}+\frac{11}{18}\right)}
Add 154 and 8 to get 162.
\sqrt{\frac{243}{121}-\frac{54}{55}\left(\frac{2}{9}+\frac{11}{18}\right)}
Reduce the fraction \frac{162}{165} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{243}{121}-\frac{54}{55}\left(\frac{4}{18}+\frac{11}{18}\right)}
Least common multiple of 9 and 18 is 18. Convert \frac{2}{9} and \frac{11}{18} to fractions with denominator 18.
\sqrt{\frac{243}{121}-\frac{54}{55}\times \frac{4+11}{18}}
Since \frac{4}{18} and \frac{11}{18} have the same denominator, add them by adding their numerators.
\sqrt{\frac{243}{121}-\frac{54}{55}\times \frac{15}{18}}
Add 4 and 11 to get 15.
\sqrt{\frac{243}{121}-\frac{54}{55}\times \frac{5}{6}}
Reduce the fraction \frac{15}{18} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{243}{121}-\frac{54\times 5}{55\times 6}}
Multiply \frac{54}{55} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{243}{121}-\frac{270}{330}}
Do the multiplications in the fraction \frac{54\times 5}{55\times 6}.
\sqrt{\frac{243}{121}-\frac{9}{11}}
Reduce the fraction \frac{270}{330} to lowest terms by extracting and canceling out 30.
\sqrt{\frac{243}{121}-\frac{99}{121}}
Least common multiple of 121 and 11 is 121. Convert \frac{243}{121} and \frac{9}{11} to fractions with denominator 121.
\sqrt{\frac{243-99}{121}}
Since \frac{243}{121} and \frac{99}{121} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{144}{121}}
Subtract 99 from 243 to get 144.
\frac{12}{11}
Rewrite the square root of the division \frac{144}{121} as the division of square roots \frac{\sqrt{144}}{\sqrt{121}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}