Evaluate
\frac{\sqrt{30}}{400000000}\approx 0.000000014
Share
Copied to clipboard
\sqrt{\frac{1.05\times \frac{1}{100000000000000}}{56}}
Calculate 10 to the power of -14 and get \frac{1}{100000000000000}.
\sqrt{\frac{\frac{21}{2000000000000000}}{56}}
Multiply 1.05 and \frac{1}{100000000000000} to get \frac{21}{2000000000000000}.
\sqrt{\frac{21}{2000000000000000\times 56}}
Express \frac{\frac{21}{2000000000000000}}{56} as a single fraction.
\sqrt{\frac{21}{112000000000000000}}
Multiply 2000000000000000 and 56 to get 112000000000000000.
\sqrt{\frac{3}{16000000000000000}}
Reduce the fraction \frac{21}{112000000000000000} to lowest terms by extracting and canceling out 7.
\frac{\sqrt{3}}{\sqrt{16000000000000000}}
Rewrite the square root of the division \sqrt{\frac{3}{16000000000000000}} as the division of square roots \frac{\sqrt{3}}{\sqrt{16000000000000000}}.
\frac{\sqrt{3}}{40000000\sqrt{10}}
Factor 16000000000000000=40000000^{2}\times 10. Rewrite the square root of the product \sqrt{40000000^{2}\times 10} as the product of square roots \sqrt{40000000^{2}}\sqrt{10}. Take the square root of 40000000^{2}.
\frac{\sqrt{3}\sqrt{10}}{40000000\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{40000000\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\sqrt{3}\sqrt{10}}{40000000\times 10}
The square of \sqrt{10} is 10.
\frac{\sqrt{30}}{40000000\times 10}
To multiply \sqrt{3} and \sqrt{10}, multiply the numbers under the square root.
\frac{\sqrt{30}}{400000000}
Multiply 40000000 and 10 to get 400000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}