Evaluate
\frac{\sqrt{3}}{3}\approx 0.577350269
Share
Copied to clipboard
\sqrt{\frac{1-\frac{1}{3}}{2}}
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
\sqrt{\frac{\frac{3}{3}-\frac{1}{3}}{2}}
Convert 1 to fraction \frac{3}{3}.
\sqrt{\frac{\frac{3-1}{3}}{2}}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{2}{3}}{2}}
Subtract 1 from 3 to get 2.
\sqrt{\frac{2}{3\times 2}}
Express \frac{\frac{2}{3}}{2} as a single fraction.
\sqrt{\frac{1}{3}}
Cancel out 2 in both numerator and denominator.
\frac{\sqrt{1}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{1}{\sqrt{3}}
Calculate the square root of 1 and get 1.
\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{3}
The square of \sqrt{3} is 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}