Evaluate
\frac{10\sqrt{205}}{3}\approx 47.726070211
Share
Copied to clipboard
\sqrt{\frac{1}{8}\left(\frac{164025}{9}-\frac{25}{9}\right)}
Convert 18225 to fraction \frac{164025}{9}.
\sqrt{\frac{1}{8}\times \frac{164025-25}{9}}
Since \frac{164025}{9} and \frac{25}{9} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{1}{8}\times \frac{164000}{9}}
Subtract 25 from 164025 to get 164000.
\sqrt{\frac{1\times 164000}{8\times 9}}
Multiply \frac{1}{8} times \frac{164000}{9} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{164000}{72}}
Do the multiplications in the fraction \frac{1\times 164000}{8\times 9}.
\sqrt{\frac{20500}{9}}
Reduce the fraction \frac{164000}{72} to lowest terms by extracting and canceling out 8.
\frac{\sqrt{20500}}{\sqrt{9}}
Rewrite the square root of the division \sqrt{\frac{20500}{9}} as the division of square roots \frac{\sqrt{20500}}{\sqrt{9}}.
\frac{10\sqrt{205}}{\sqrt{9}}
Factor 20500=10^{2}\times 205. Rewrite the square root of the product \sqrt{10^{2}\times 205} as the product of square roots \sqrt{10^{2}}\sqrt{205}. Take the square root of 10^{2}.
\frac{10\sqrt{205}}{3}
Calculate the square root of 9 and get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}