Evaluate
\frac{2}{3}\approx 0.666666667
Factor
\frac{2}{3} = 0.6666666666666666
Share
Copied to clipboard
\sqrt{\frac{1\times 2}{4\times 3}+\frac{\frac{1}{8}}{\frac{3}{2}}}\sqrt{\left(\frac{5}{18}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Multiply \frac{1}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{2}{12}+\frac{\frac{1}{8}}{\frac{3}{2}}}\sqrt{\left(\frac{5}{18}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Do the multiplications in the fraction \frac{1\times 2}{4\times 3}.
\sqrt{\frac{1}{6}+\frac{\frac{1}{8}}{\frac{3}{2}}}\sqrt{\left(\frac{5}{18}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{1}{6}+\frac{1}{8}\times \frac{2}{3}}\sqrt{\left(\frac{5}{18}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Divide \frac{1}{8} by \frac{3}{2} by multiplying \frac{1}{8} by the reciprocal of \frac{3}{2}.
\sqrt{\frac{1}{6}+\frac{1\times 2}{8\times 3}}\sqrt{\left(\frac{5}{18}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Multiply \frac{1}{8} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{1}{6}+\frac{2}{24}}\sqrt{\left(\frac{5}{18}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Do the multiplications in the fraction \frac{1\times 2}{8\times 3}.
\sqrt{\frac{1}{6}+\frac{1}{12}}\sqrt{\left(\frac{5}{18}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Reduce the fraction \frac{2}{24} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{2}{12}+\frac{1}{12}}\sqrt{\left(\frac{5}{18}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Least common multiple of 6 and 12 is 12. Convert \frac{1}{6} and \frac{1}{12} to fractions with denominator 12.
\sqrt{\frac{2+1}{12}}\sqrt{\left(\frac{5}{18}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Since \frac{2}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
\sqrt{\frac{3}{12}}\sqrt{\left(\frac{5}{18}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Add 2 and 1 to get 3.
\sqrt{\frac{1}{4}}\sqrt{\left(\frac{5}{18}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{1}{2}\sqrt{\left(\frac{5}{18}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{1}{2}\sqrt{\left(\frac{15}{54}+\frac{1}{54}\right)\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Least common multiple of 18 and 54 is 54. Convert \frac{5}{18} and \frac{1}{54} to fractions with denominator 54.
\frac{1}{2}\sqrt{\frac{15+1}{54}\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Since \frac{15}{54} and \frac{1}{54} have the same denominator, add them by adding their numerators.
\frac{1}{2}\sqrt{\frac{16}{54}\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Add 15 and 1 to get 16.
\frac{1}{2}\sqrt{\frac{8}{27}\left(\frac{5}{2}-1\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Reduce the fraction \frac{16}{54} to lowest terms by extracting and canceling out 2.
\frac{1}{2}\sqrt{\frac{8}{27}\left(\frac{5}{2}-\frac{2}{2}\right)}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Convert 1 to fraction \frac{2}{2}.
\frac{1}{2}\sqrt{\frac{8}{27}\times \frac{5-2}{2}}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Since \frac{5}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}\sqrt{\frac{8}{27}\times \frac{3}{2}}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Subtract 2 from 5 to get 3.
\frac{1}{2}\sqrt{\frac{8\times 3}{27\times 2}}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Multiply \frac{8}{27} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}\sqrt{\frac{24}{54}}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Do the multiplications in the fraction \frac{8\times 3}{27\times 2}.
\frac{1}{2}\sqrt{\frac{4}{9}}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Reduce the fraction \frac{24}{54} to lowest terms by extracting and canceling out 6.
\frac{1}{2}\times \frac{2}{3}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Rewrite the square root of the division \frac{4}{9} as the division of square roots \frac{\sqrt{4}}{\sqrt{9}}. Take the square root of both numerator and denominator.
\frac{1\times 2}{2\times 3}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Multiply \frac{1}{2} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}+\left(\frac{1}{30}+\frac{1}{6}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Cancel out 2 in both numerator and denominator.
\frac{1}{3}+\left(\frac{1}{30}+\frac{5}{30}\right)\left(\frac{3}{2}+\frac{1}{6}\right)
Least common multiple of 30 and 6 is 30. Convert \frac{1}{30} and \frac{1}{6} to fractions with denominator 30.
\frac{1}{3}+\frac{1+5}{30}\left(\frac{3}{2}+\frac{1}{6}\right)
Since \frac{1}{30} and \frac{5}{30} have the same denominator, add them by adding their numerators.
\frac{1}{3}+\frac{6}{30}\left(\frac{3}{2}+\frac{1}{6}\right)
Add 1 and 5 to get 6.
\frac{1}{3}+\frac{1}{5}\left(\frac{3}{2}+\frac{1}{6}\right)
Reduce the fraction \frac{6}{30} to lowest terms by extracting and canceling out 6.
\frac{1}{3}+\frac{1}{5}\left(\frac{9}{6}+\frac{1}{6}\right)
Least common multiple of 2 and 6 is 6. Convert \frac{3}{2} and \frac{1}{6} to fractions with denominator 6.
\frac{1}{3}+\frac{1}{5}\times \frac{9+1}{6}
Since \frac{9}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{1}{3}+\frac{1}{5}\times \frac{10}{6}
Add 9 and 1 to get 10.
\frac{1}{3}+\frac{1}{5}\times \frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
\frac{1}{3}+\frac{1\times 5}{5\times 3}
Multiply \frac{1}{5} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}+\frac{1}{3}
Cancel out 5 in both numerator and denominator.
\frac{1+1}{3}
Since \frac{1}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{2}{3}
Add 1 and 1 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}