Evaluate
\frac{11\sqrt{10}}{20}\approx 1.739252713
Share
Copied to clipboard
\sqrt{\frac{108.9}{0.36\times 100}}
Multiply 0.9 and 121 to get 108.9.
\sqrt{\frac{108.9}{36}}
Multiply 0.36 and 100 to get 36.
\sqrt{\frac{1089}{360}}
Expand \frac{108.9}{36} by multiplying both numerator and the denominator by 10.
\sqrt{\frac{121}{40}}
Reduce the fraction \frac{1089}{360} to lowest terms by extracting and canceling out 9.
\frac{\sqrt{121}}{\sqrt{40}}
Rewrite the square root of the division \sqrt{\frac{121}{40}} as the division of square roots \frac{\sqrt{121}}{\sqrt{40}}.
\frac{11}{\sqrt{40}}
Calculate the square root of 121 and get 11.
\frac{11}{2\sqrt{10}}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\frac{11\sqrt{10}}{2\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{11}{2\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{11\sqrt{10}}{2\times 10}
The square of \sqrt{10} is 10.
\frac{11\sqrt{10}}{20}
Multiply 2 and 10 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}