Evaluate
\frac{3\sqrt{26}}{2000}\approx 0.007648529
Share
Copied to clipboard
\sqrt{\frac{0.0819}{1400}}
Multiply 0.09 and 0.91 to get 0.0819.
\sqrt{\frac{819}{14000000}}
Expand \frac{0.0819}{1400} by multiplying both numerator and the denominator by 10000.
\sqrt{\frac{117}{2000000}}
Reduce the fraction \frac{819}{14000000} to lowest terms by extracting and canceling out 7.
\frac{\sqrt{117}}{\sqrt{2000000}}
Rewrite the square root of the division \sqrt{\frac{117}{2000000}} as the division of square roots \frac{\sqrt{117}}{\sqrt{2000000}}.
\frac{3\sqrt{13}}{\sqrt{2000000}}
Factor 117=3^{2}\times 13. Rewrite the square root of the product \sqrt{3^{2}\times 13} as the product of square roots \sqrt{3^{2}}\sqrt{13}. Take the square root of 3^{2}.
\frac{3\sqrt{13}}{1000\sqrt{2}}
Factor 2000000=1000^{2}\times 2. Rewrite the square root of the product \sqrt{1000^{2}\times 2} as the product of square roots \sqrt{1000^{2}}\sqrt{2}. Take the square root of 1000^{2}.
\frac{3\sqrt{13}\sqrt{2}}{1000\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{13}}{1000\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{13}\sqrt{2}}{1000\times 2}
The square of \sqrt{2} is 2.
\frac{3\sqrt{26}}{1000\times 2}
To multiply \sqrt{13} and \sqrt{2}, multiply the numbers under the square root.
\frac{3\sqrt{26}}{2000}
Multiply 1000 and 2 to get 2000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}