Evaluate
\frac{\sqrt{5}}{40}\approx 0.055901699
Share
Copied to clipboard
\sqrt{\frac{0.25\times 0.75}{60}}
Subtract 0.25 from 1 to get 0.75.
\sqrt{\frac{0.1875}{60}}
Multiply 0.25 and 0.75 to get 0.1875.
\sqrt{\frac{1875}{600000}}
Expand \frac{0.1875}{60} by multiplying both numerator and the denominator by 10000.
\sqrt{\frac{1}{320}}
Reduce the fraction \frac{1875}{600000} to lowest terms by extracting and canceling out 1875.
\frac{\sqrt{1}}{\sqrt{320}}
Rewrite the square root of the division \sqrt{\frac{1}{320}} as the division of square roots \frac{\sqrt{1}}{\sqrt{320}}.
\frac{1}{\sqrt{320}}
Calculate the square root of 1 and get 1.
\frac{1}{8\sqrt{5}}
Factor 320=8^{2}\times 5. Rewrite the square root of the product \sqrt{8^{2}\times 5} as the product of square roots \sqrt{8^{2}}\sqrt{5}. Take the square root of 8^{2}.
\frac{\sqrt{5}}{8\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{1}{8\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}}{8\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{5}}{40}
Multiply 8 and 5 to get 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}