Evaluate
\frac{\sqrt{697}}{140}\approx 0.18857684
Share
Copied to clipboard
\sqrt{\frac{0.81}{36}+\frac{0.8^{2}}{49}}
Calculate 0.9 to the power of 2 and get 0.81.
\sqrt{\frac{81}{3600}+\frac{0.8^{2}}{49}}
Expand \frac{0.81}{36} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{9}{400}+\frac{0.8^{2}}{49}}
Reduce the fraction \frac{81}{3600} to lowest terms by extracting and canceling out 9.
\sqrt{\frac{9}{400}+\frac{0.64}{49}}
Calculate 0.8 to the power of 2 and get 0.64.
\sqrt{\frac{9}{400}+\frac{64}{4900}}
Expand \frac{0.64}{49} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{9}{400}+\frac{16}{1225}}
Reduce the fraction \frac{64}{4900} to lowest terms by extracting and canceling out 4.
\sqrt{\frac{441}{19600}+\frac{256}{19600}}
Least common multiple of 400 and 1225 is 19600. Convert \frac{9}{400} and \frac{16}{1225} to fractions with denominator 19600.
\sqrt{\frac{441+256}{19600}}
Since \frac{441}{19600} and \frac{256}{19600} have the same denominator, add them by adding their numerators.
\sqrt{\frac{697}{19600}}
Add 441 and 256 to get 697.
\frac{\sqrt{697}}{\sqrt{19600}}
Rewrite the square root of the division \sqrt{\frac{697}{19600}} as the division of square roots \frac{\sqrt{697}}{\sqrt{19600}}.
\frac{\sqrt{697}}{140}
Calculate the square root of 19600 and get 140.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}