Evaluate
\frac{\sqrt{30}}{2500}\approx 0.00219089
Share
Copied to clipboard
\sqrt{\frac{0.000016+0.002^{2}+0.002^{2}}{5}}
Calculate 0.004 to the power of 2 and get 0.000016.
\sqrt{\frac{0.000016+0.000004+0.002^{2}}{5}}
Calculate 0.002 to the power of 2 and get 0.000004.
\sqrt{\frac{0.00002+0.002^{2}}{5}}
Add 0.000016 and 0.000004 to get 0.00002.
\sqrt{\frac{0.00002+0.000004}{5}}
Calculate 0.002 to the power of 2 and get 0.000004.
\sqrt{\frac{0.000024}{5}}
Add 0.00002 and 0.000004 to get 0.000024.
\sqrt{\frac{24}{5000000}}
Expand \frac{0.000024}{5} by multiplying both numerator and the denominator by 1000000.
\sqrt{\frac{3}{625000}}
Reduce the fraction \frac{24}{5000000} to lowest terms by extracting and canceling out 8.
\frac{\sqrt{3}}{\sqrt{625000}}
Rewrite the square root of the division \sqrt{\frac{3}{625000}} as the division of square roots \frac{\sqrt{3}}{\sqrt{625000}}.
\frac{\sqrt{3}}{250\sqrt{10}}
Factor 625000=250^{2}\times 10. Rewrite the square root of the product \sqrt{250^{2}\times 10} as the product of square roots \sqrt{250^{2}}\sqrt{10}. Take the square root of 250^{2}.
\frac{\sqrt{3}\sqrt{10}}{250\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{250\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\sqrt{3}\sqrt{10}}{250\times 10}
The square of \sqrt{10} is 10.
\frac{\sqrt{30}}{250\times 10}
To multiply \sqrt{3} and \sqrt{10}, multiply the numbers under the square root.
\frac{\sqrt{30}}{2500}
Multiply 250 and 10 to get 2500.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}