Evaluate
\frac{3\sqrt{47170}}{53}\approx 12.293578628
Share
Copied to clipboard
\sqrt{\frac{\left(-42\right)^{2}+\left(12-53\right)^{2}+\left(13-53\right)^{2}+\left(14-53\right)^{2}+\left(15-53\right)^{2}}{53}}
Subtract 53 from 11 to get -42.
\sqrt{\frac{1764+\left(12-53\right)^{2}+\left(13-53\right)^{2}+\left(14-53\right)^{2}+\left(15-53\right)^{2}}{53}}
Calculate -42 to the power of 2 and get 1764.
\sqrt{\frac{1764+\left(-41\right)^{2}+\left(13-53\right)^{2}+\left(14-53\right)^{2}+\left(15-53\right)^{2}}{53}}
Subtract 53 from 12 to get -41.
\sqrt{\frac{1764+1681+\left(13-53\right)^{2}+\left(14-53\right)^{2}+\left(15-53\right)^{2}}{53}}
Calculate -41 to the power of 2 and get 1681.
\sqrt{\frac{3445+\left(13-53\right)^{2}+\left(14-53\right)^{2}+\left(15-53\right)^{2}}{53}}
Add 1764 and 1681 to get 3445.
\sqrt{\frac{3445+\left(-40\right)^{2}+\left(14-53\right)^{2}+\left(15-53\right)^{2}}{53}}
Subtract 53 from 13 to get -40.
\sqrt{\frac{3445+1600+\left(14-53\right)^{2}+\left(15-53\right)^{2}}{53}}
Calculate -40 to the power of 2 and get 1600.
\sqrt{\frac{5045+\left(14-53\right)^{2}+\left(15-53\right)^{2}}{53}}
Add 3445 and 1600 to get 5045.
\sqrt{\frac{5045+\left(-39\right)^{2}+\left(15-53\right)^{2}}{53}}
Subtract 53 from 14 to get -39.
\sqrt{\frac{5045+1521+\left(15-53\right)^{2}}{53}}
Calculate -39 to the power of 2 and get 1521.
\sqrt{\frac{6566+\left(15-53\right)^{2}}{53}}
Add 5045 and 1521 to get 6566.
\sqrt{\frac{6566+\left(-38\right)^{2}}{53}}
Subtract 53 from 15 to get -38.
\sqrt{\frac{6566+1444}{53}}
Calculate -38 to the power of 2 and get 1444.
\sqrt{\frac{8010}{53}}
Add 6566 and 1444 to get 8010.
\frac{\sqrt{8010}}{\sqrt{53}}
Rewrite the square root of the division \sqrt{\frac{8010}{53}} as the division of square roots \frac{\sqrt{8010}}{\sqrt{53}}.
\frac{3\sqrt{890}}{\sqrt{53}}
Factor 8010=3^{2}\times 890. Rewrite the square root of the product \sqrt{3^{2}\times 890} as the product of square roots \sqrt{3^{2}}\sqrt{890}. Take the square root of 3^{2}.
\frac{3\sqrt{890}\sqrt{53}}{\left(\sqrt{53}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{890}}{\sqrt{53}} by multiplying numerator and denominator by \sqrt{53}.
\frac{3\sqrt{890}\sqrt{53}}{53}
The square of \sqrt{53} is 53.
\frac{3\sqrt{47170}}{53}
To multiply \sqrt{890} and \sqrt{53}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}