Evaluate
\frac{\sqrt{37463}}{2}\approx 96.776805072
Share
Copied to clipboard
\sqrt{\frac{\left(-125\right)^{2}+\left(12-136\right)^{2}+\left(14-136\right)^{2}+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Subtract 136 from 11 to get -125.
\sqrt{\frac{15625+\left(12-136\right)^{2}+\left(14-136\right)^{2}+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Calculate -125 to the power of 2 and get 15625.
\sqrt{\frac{15625+\left(-124\right)^{2}+\left(14-136\right)^{2}+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Subtract 136 from 12 to get -124.
\sqrt{\frac{15625+15376+\left(14-136\right)^{2}+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Calculate -124 to the power of 2 and get 15376.
\sqrt{\frac{31001+\left(14-136\right)^{2}+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Add 15625 and 15376 to get 31001.
\sqrt{\frac{31001+\left(-122\right)^{2}+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Subtract 136 from 14 to get -122.
\sqrt{\frac{31001+14884+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Calculate -122 to the power of 2 and get 14884.
\sqrt{\frac{45885+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Add 31001 and 14884 to get 45885.
\sqrt{\frac{45885+\left(-121\right)^{2}+\left(16-136\right)^{2}}{8}}
Subtract 136 from 15 to get -121.
\sqrt{\frac{45885+14641+\left(16-136\right)^{2}}{8}}
Calculate -121 to the power of 2 and get 14641.
\sqrt{\frac{60526+\left(16-136\right)^{2}}{8}}
Add 45885 and 14641 to get 60526.
\sqrt{\frac{60526+\left(-120\right)^{2}}{8}}
Subtract 136 from 16 to get -120.
\sqrt{\frac{60526+14400}{8}}
Calculate -120 to the power of 2 and get 14400.
\sqrt{\frac{74926}{8}}
Add 60526 and 14400 to get 74926.
\sqrt{\frac{37463}{4}}
Reduce the fraction \frac{74926}{8} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{37463}}{\sqrt{4}}
Rewrite the square root of the division \sqrt{\frac{37463}{4}} as the division of square roots \frac{\sqrt{37463}}{\sqrt{4}}.
\frac{\sqrt{37463}}{2}
Calculate the square root of 4 and get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}