Evaluate
\frac{\sqrt{215}}{10}\approx 1.46628783
Share
Copied to clipboard
\sqrt{\frac{\left(-2.6\right)^{2}+\left(12-13.6\right)^{2}+\left(14-13.6\right)^{2}+\left(15-13.6\right)^{2}+\left(16-13.6\right)^{2}}{8}}
Subtract 13.6 from 11 to get -2.6.
\sqrt{\frac{6.76+\left(12-13.6\right)^{2}+\left(14-13.6\right)^{2}+\left(15-13.6\right)^{2}+\left(16-13.6\right)^{2}}{8}}
Calculate -2.6 to the power of 2 and get 6.76.
\sqrt{\frac{6.76+\left(-1.6\right)^{2}+\left(14-13.6\right)^{2}+\left(15-13.6\right)^{2}+\left(16-13.6\right)^{2}}{8}}
Subtract 13.6 from 12 to get -1.6.
\sqrt{\frac{6.76+2.56+\left(14-13.6\right)^{2}+\left(15-13.6\right)^{2}+\left(16-13.6\right)^{2}}{8}}
Calculate -1.6 to the power of 2 and get 2.56.
\sqrt{\frac{9.32+\left(14-13.6\right)^{2}+\left(15-13.6\right)^{2}+\left(16-13.6\right)^{2}}{8}}
Add 6.76 and 2.56 to get 9.32.
\sqrt{\frac{9.32+0.4^{2}+\left(15-13.6\right)^{2}+\left(16-13.6\right)^{2}}{8}}
Subtract 13.6 from 14 to get 0.4.
\sqrt{\frac{9.32+0.16+\left(15-13.6\right)^{2}+\left(16-13.6\right)^{2}}{8}}
Calculate 0.4 to the power of 2 and get 0.16.
\sqrt{\frac{9.48+\left(15-13.6\right)^{2}+\left(16-13.6\right)^{2}}{8}}
Add 9.32 and 0.16 to get 9.48.
\sqrt{\frac{9.48+1.4^{2}+\left(16-13.6\right)^{2}}{8}}
Subtract 13.6 from 15 to get 1.4.
\sqrt{\frac{9.48+1.96+\left(16-13.6\right)^{2}}{8}}
Calculate 1.4 to the power of 2 and get 1.96.
\sqrt{\frac{11.44+\left(16-13.6\right)^{2}}{8}}
Add 9.48 and 1.96 to get 11.44.
\sqrt{\frac{11.44+2.4^{2}}{8}}
Subtract 13.6 from 16 to get 2.4.
\sqrt{\frac{11.44+5.76}{8}}
Calculate 2.4 to the power of 2 and get 5.76.
\sqrt{\frac{17.2}{8}}
Add 11.44 and 5.76 to get 17.2.
\sqrt{\frac{172}{80}}
Expand \frac{17.2}{8} by multiplying both numerator and the denominator by 10.
\sqrt{\frac{43}{20}}
Reduce the fraction \frac{172}{80} to lowest terms by extracting and canceling out 4.
\frac{\sqrt{43}}{\sqrt{20}}
Rewrite the square root of the division \sqrt{\frac{43}{20}} as the division of square roots \frac{\sqrt{43}}{\sqrt{20}}.
\frac{\sqrt{43}}{2\sqrt{5}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\sqrt{43}\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{43}}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{43}\sqrt{5}}{2\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{215}}{2\times 5}
To multiply \sqrt{43} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{215}}{10}
Multiply 2 and 5 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}