Evaluate
\frac{7\sqrt{70}}{5}\approx 11.713240371
Share
Copied to clipboard
\sqrt{\frac{\left(14700-0.6\times 9.8\times 1500\right)\times 35}{1500}}
Multiply 9.8 and 1500 to get 14700.
\sqrt{\frac{\left(14700-5.88\times 1500\right)\times 35}{1500}}
Multiply 0.6 and 9.8 to get 5.88.
\sqrt{\frac{\left(14700-8820\right)\times 35}{1500}}
Multiply 5.88 and 1500 to get 8820.
\sqrt{\frac{5880\times 35}{1500}}
Subtract 8820 from 14700 to get 5880.
\sqrt{\frac{205800}{1500}}
Multiply 5880 and 35 to get 205800.
\sqrt{\frac{686}{5}}
Reduce the fraction \frac{205800}{1500} to lowest terms by extracting and canceling out 300.
\frac{\sqrt{686}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{686}{5}} as the division of square roots \frac{\sqrt{686}}{\sqrt{5}}.
\frac{7\sqrt{14}}{\sqrt{5}}
Factor 686=7^{2}\times 14. Rewrite the square root of the product \sqrt{7^{2}\times 14} as the product of square roots \sqrt{7^{2}}\sqrt{14}. Take the square root of 7^{2}.
\frac{7\sqrt{14}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{7\sqrt{14}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{7\sqrt{14}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{7\sqrt{70}}{5}
To multiply \sqrt{14} and \sqrt{5}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}