Skip to main content
Evaluate
Tick mark Image

Share

\sqrt{\frac{\frac{22}{6}-\frac{5}{6}-\frac{2}{3}}{1-\frac{5}{7}}\left(1-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Least common multiple of 3 and 6 is 6. Convert \frac{11}{3} and \frac{5}{6} to fractions with denominator 6.
\sqrt{\frac{\frac{22-5}{6}-\frac{2}{3}}{1-\frac{5}{7}}\left(1-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Since \frac{22}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{17}{6}-\frac{2}{3}}{1-\frac{5}{7}}\left(1-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Subtract 5 from 22 to get 17.
\sqrt{\frac{\frac{17}{6}-\frac{4}{6}}{1-\frac{5}{7}}\left(1-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Least common multiple of 6 and 3 is 6. Convert \frac{17}{6} and \frac{2}{3} to fractions with denominator 6.
\sqrt{\frac{\frac{17-4}{6}}{1-\frac{5}{7}}\left(1-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Since \frac{17}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{13}{6}}{1-\frac{5}{7}}\left(1-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Subtract 4 from 17 to get 13.
\sqrt{\frac{\frac{13}{6}}{\frac{7}{7}-\frac{5}{7}}\left(1-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Convert 1 to fraction \frac{7}{7}.
\sqrt{\frac{\frac{13}{6}}{\frac{7-5}{7}}\left(1-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Since \frac{7}{7} and \frac{5}{7} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{13}{6}}{\frac{2}{7}}\left(1-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Subtract 5 from 7 to get 2.
\sqrt{\frac{13}{6}\times \frac{7}{2}\left(1-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Divide \frac{13}{6} by \frac{2}{7} by multiplying \frac{13}{6} by the reciprocal of \frac{2}{7}.
\sqrt{\frac{13\times 7}{6\times 2}\left(1-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Multiply \frac{13}{6} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{91}{12}\left(1-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Do the multiplications in the fraction \frac{13\times 7}{6\times 2}.
\sqrt{\frac{91}{12}\left(\frac{49}{49}-\frac{33}{49}\right)}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Convert 1 to fraction \frac{49}{49}.
\sqrt{\frac{91}{12}\times \frac{49-33}{49}}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Since \frac{49}{49} and \frac{33}{49} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{91}{12}\times \frac{16}{49}}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Subtract 33 from 49 to get 16.
\sqrt{\frac{91\times 16}{12\times 49}}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Multiply \frac{91}{12} times \frac{16}{49} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{1456}{588}}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Do the multiplications in the fraction \frac{91\times 16}{12\times 49}.
\sqrt{\frac{52}{21}}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Reduce the fraction \frac{1456}{588} to lowest terms by extracting and canceling out 28.
\frac{\sqrt{52}}{\sqrt{21}}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Rewrite the square root of the division \sqrt{\frac{52}{21}} as the division of square roots \frac{\sqrt{52}}{\sqrt{21}}.
\frac{2\sqrt{13}}{\sqrt{21}}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Factor 52=2^{2}\times 13. Rewrite the square root of the product \sqrt{2^{2}\times 13} as the product of square roots \sqrt{2^{2}}\sqrt{13}. Take the square root of 2^{2}.
\frac{2\sqrt{13}\sqrt{21}}{\left(\sqrt{21}\right)^{2}}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
Rationalize the denominator of \frac{2\sqrt{13}}{\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
\frac{2\sqrt{13}\sqrt{21}}{21}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
The square of \sqrt{21} is 21.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2}}
To multiply \sqrt{13} and \sqrt{21}, multiply the numbers under the square root.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{\frac{1}{2}+\frac{5}{8}}{\left(\frac{5}{4}+1\right)\times 2}}
Express \frac{\frac{\frac{1}{2}+\frac{5}{8}}{\frac{5}{4}+1}}{2} as a single fraction.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{\frac{4}{8}+\frac{5}{8}}{\left(\frac{5}{4}+1\right)\times 2}}
Least common multiple of 2 and 8 is 8. Convert \frac{1}{2} and \frac{5}{8} to fractions with denominator 8.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{\frac{4+5}{8}}{\left(\frac{5}{4}+1\right)\times 2}}
Since \frac{4}{8} and \frac{5}{8} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{\frac{9}{8}}{\left(\frac{5}{4}+1\right)\times 2}}
Add 4 and 5 to get 9.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{\frac{9}{8}}{\left(\frac{5}{4}+\frac{4}{4}\right)\times 2}}
Convert 1 to fraction \frac{4}{4}.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{\frac{9}{8}}{\frac{5+4}{4}\times 2}}
Since \frac{5}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{\frac{9}{8}}{\frac{9}{4}\times 2}}
Add 5 and 4 to get 9.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{\frac{9}{8}}{\frac{9\times 2}{4}}}
Express \frac{9}{4}\times 2 as a single fraction.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{\frac{9}{8}}{\frac{18}{4}}}
Multiply 9 and 2 to get 18.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{\frac{9}{8}}{\frac{9}{2}}}
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{9}{8}\times \frac{2}{9}}
Divide \frac{9}{8} by \frac{9}{2} by multiplying \frac{9}{8} by the reciprocal of \frac{9}{2}.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{9\times 2}{8\times 9}}
Multiply \frac{9}{8} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{2}{8}}
Cancel out 9 in both numerator and denominator.
\frac{2\sqrt{273}}{21}+\sqrt{\frac{1}{4}}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{2\sqrt{273}}{21}+\frac{1}{2}
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{2\times 2\sqrt{273}}{42}+\frac{21}{42}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 21 and 2 is 42. Multiply \frac{2\sqrt{273}}{21} times \frac{2}{2}. Multiply \frac{1}{2} times \frac{21}{21}.
\frac{2\times 2\sqrt{273}+21}{42}
Since \frac{2\times 2\sqrt{273}}{42} and \frac{21}{42} have the same denominator, add them by adding their numerators.
\frac{4\sqrt{273}+21}{42}
Do the multiplications in 2\times 2\sqrt{273}+21.