Solve for x
x=\frac{3^{\frac{2}{3}}}{3}\approx 0.693361274
x=0
Graph
Share
Copied to clipboard
\left(\sqrt[3]{9}x\right)^{2}=\left(\sqrt{3x}\right)^{2}
Square both sides of the equation.
\left(\sqrt[3]{9}\right)^{2}x^{2}=\left(\sqrt{3x}\right)^{2}
Expand \left(\sqrt[3]{9}x\right)^{2}.
\left(\sqrt[3]{9}\right)^{2}x^{2}=3x
Calculate \sqrt{3x} to the power of 2 and get 3x.
\left(\sqrt[3]{9}\right)^{2}x^{2}-3x=0
Subtract 3x from both sides.
x\left(\left(\sqrt[3]{9}\right)^{2}x-3\right)=0
Factor out x.
x=0 x=\frac{3}{\left(\sqrt[3]{9}\right)^{2}}
To find equation solutions, solve x=0 and \left(\sqrt[3]{9}\right)^{2}x-3=0.
\sqrt[3]{9}\times 0=\sqrt{3\times 0}
Substitute 0 for x in the equation \sqrt[3]{9}x=\sqrt{3x}.
0=0
Simplify. The value x=0 satisfies the equation.
\sqrt[3]{9}\times \frac{3}{\left(\sqrt[3]{9}\right)^{2}}=\sqrt{3\times \frac{3}{\left(\sqrt[3]{9}\right)^{2}}}
Substitute \frac{3}{\left(\sqrt[3]{9}\right)^{2}} for x in the equation \sqrt[3]{9}x=\sqrt{3x}.
3\times 9^{-\frac{1}{3}}=3\times 9^{-\frac{1}{3}}
Simplify. The value x=\frac{3}{\left(\sqrt[3]{9}\right)^{2}} satisfies the equation.
x=0 x=\frac{3}{\left(\sqrt[3]{9}\right)^{2}}
List all solutions of \sqrt[3]{9}x=\sqrt{3x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}