Evaluate
\sqrt[3]{3}\approx 1.44224957
Share
Copied to clipboard
\sqrt[9]{27}=\sqrt[9]{3^{3}}=3^{\frac{3}{9}}=3^{\frac{1}{3}}=\sqrt[3]{3}
Rewrite \sqrt[9]{27} as \sqrt[9]{3^{3}}. Convert from radical to exponential form and cancel out 3 in the exponent. Convert back to radical form.
\sqrt[3]{3}+\sqrt[15]{243}-\sqrt[6]{9}
Insert the obtained value back in the expression.
\sqrt[15]{243}=\sqrt[15]{3^{5}}=3^{\frac{5}{15}}=3^{\frac{1}{3}}=\sqrt[3]{3}
Rewrite \sqrt[15]{243} as \sqrt[15]{3^{5}}. Convert from radical to exponential form and cancel out 5 in the exponent. Convert back to radical form.
\sqrt[3]{3}+\sqrt[3]{3}-\sqrt[6]{9}
Insert the obtained value back in the expression.
2\sqrt[3]{3}-\sqrt[6]{9}
Combine \sqrt[3]{3} and \sqrt[3]{3} to get 2\sqrt[3]{3}.
\sqrt[6]{9}=\sqrt[6]{3^{2}}=3^{\frac{2}{6}}=3^{\frac{1}{3}}=\sqrt[3]{3}
Rewrite \sqrt[6]{9} as \sqrt[6]{3^{2}}. Convert from radical to exponential form and cancel out 2 in the exponent. Convert back to radical form.
2\sqrt[3]{3}-\sqrt[3]{3}
Insert the obtained value back in the expression.
\sqrt[3]{3}
Combine 2\sqrt[3]{3} and -\sqrt[3]{3} to get \sqrt[3]{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}