Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt[8]{8}\left(2x-3\right)=6\left(x+4\right)
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by x+4.
2\sqrt[8]{8}x-3\sqrt[8]{8}=6\left(x+4\right)
Use the distributive property to multiply \sqrt[8]{8} by 2x-3.
2\sqrt[8]{8}x-3\sqrt[8]{8}=6x+24
Use the distributive property to multiply 6 by x+4.
2\sqrt[8]{8}x-3\sqrt[8]{8}-6x=24
Subtract 6x from both sides.
2\sqrt[8]{8}x-6x=24+3\sqrt[8]{8}
Add 3\sqrt[8]{8} to both sides.
\left(2\sqrt[8]{8}-6\right)x=24+3\sqrt[8]{8}
Combine all terms containing x.
\left(2\sqrt[8]{8}-6\right)x=3\sqrt[8]{8}+24
The equation is in standard form.
\frac{\left(2\sqrt[8]{8}-6\right)x}{2\sqrt[8]{8}-6}=\frac{3\times 2^{\frac{3}{8}}+24}{2\sqrt[8]{8}-6}
Divide both sides by 2\sqrt[8]{8}-6.
x=\frac{3\times 2^{\frac{3}{8}}+24}{2\sqrt[8]{8}-6}
Dividing by 2\sqrt[8]{8}-6 undoes the multiplication by 2\sqrt[8]{8}-6.
x=-\frac{3\left(2\sqrt{2}+81\right)\left(2^{\frac{3}{8}}+3\right)\left(2^{\frac{3}{4}}+9\right)\left(2^{\frac{7}{8}}+1\right)\sqrt[8]{2}\left(\sqrt[4]{2}+4-2\sqrt[8]{2}\right)}{13106}
Divide 24+3\times 2^{\frac{3}{8}} by 2\sqrt[8]{8}-6.